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Abstract

This report gives details on the implementation of AES-128 bit encryption and decryption on Verilog
Hardware Description Language and the modelling of real time communication between two NEXYS4
DDR FPGA boards. Advanced Encryption Standard(AES) is a symmetric block cipher defined in US
Federal Information Processing Standard(FIPS). Encryption and Decryption has been an integral part
of communication in the modern world, where a number of exchanges of valuable information take place
through different private and public networks. Secure communication has become a crucial need for our
technological infrastructures and this project intends to explore our industry standard security measures
and explore low-cost embedded applications.
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1. Introduction

With the advent of the digital age, data became the definition of the world around us describing not only
the ambient surrounding but also our personal information. Each data shared between two parties could be
easily accessible bestowing utmost transparency of concerned parties. Hence, the requirement to securely
transfer data became inevitable. Several encryption techniques utilizing the substitution of each letter to
a known and reversible data field came into existence. But, computing power allowed illegal personnel to
decrypt data without authorization. Hence, powerful techniques were required which were immune to attacks
but simpler to process and exchange files. Encryption techniques with personal keys with the aid of already
defined abstract algebra came into popularity. People with keys could easily extract information from jargon
and people without keys would be unable to decrypt despite huge processing power.

Advanced Encryption Standard(AES) is a symmetric block cipher defined in US Federal Information
Processing Standard (FIPS). AES comes in three versions; AES 128, AES 192, and AES 256. The personal
key and the data slice taken are represented by the numeric part of the AES naming system[5]. AES is one
of the most widely used and proven encryption systems used all around the world. AES has resisted all
crypto-analysis and proved unbreakable since its introduction. This paper explores what makes AES such a
successful cryptography technique.

AES encryption system consists of four main operations in encryption and a similar set of operations in
decryption which equalizes the four operations of encryption. Each operation involves different hardware
configurations. Verilog, a hardware description language was used for producing the synthesizable design and
its verification. These hardware configurations were written in a modular format and are reused throughout
each process described in the report.

The other important part of the project was the real-time communication of the Field Programmable Gate
Arrays(FPGA) boards using AES Encryption and Decryption. The communication method of choice im-
plemented between the devices was UART, which stands for Universal Asynchronous Receiver/Transmitter.
UART, an asynchronous serial data transmission protocol was chosen for this particular project because of
its simplicity as well as its minimalist techniques. The basic unit of operation is an 8-bit method that is
8-bits of data is sent or received at a time, and which is expanded to 16 rounds to make it compatible with
128-bit AES. To conclude, whilst plain data see 8-bit data transfer, encrypted/decrypted data works with
16 8-bit data transfers in tandem.

This project is successful in creating a secure real-time communication link between FPGAs, each with
AES-128 bits encryption and decryption. This paper is wrapped around the details of the AES, each
sub-process involved in encryption and decryption techniques, UART protocol and implementation, commu-
nicating different FPGAs as well as with a computer, describing hardware schematics as well as documenting
the results after each process and the final outcome.
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2. Advanced Encryption System 128

2.1. Overview

AES is based on a design principle known as a substitution–permutation network, and is efficient in both
software and hardware[key1]. AES takes in data in blocks of 128 bits and encrypts them using the input 128
bit cipher key. The basic processing unit for AES algorithm is byte and all operations are done in the Galios
finite field (28). The finite field operations are performed on two dimensional 4*4 array of bytes which is
known as State.

Table 1: AES Transformation Method
Each box represent 8 bit out of 128 bit

in 00 in 04 in 08 in 12 → S 00 S 04 S 08 S 12 → out 00 out 04 out 08 out 12

in 01 in 05 in 09 in 13 → S 01 S 05 S 09 S 13 → out 01 out 05 out 09 out 13

in 02 in 06 in 10 in 14 → S 02 S 06 S 10 S 14 → out 02 out 06 out 10 out 14

in 03 in 07 in 11 in 15 → S 03 S 07 S 11 S 15 → out 03 out 07 out 11 out 15

Input → Process → Output

The input plain-text is pasted into state as shown above and all operations are done into the state.
The end state is then taken as output. Here’s the main breakdown of all operations involved with AES
Encryption and Decryption.

Figure 1: AES-128
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2.2. Algorithm

1. Encryption Algorithm

(a) Key Expansion : Eleven Round Keys are generated from the input cipher key using Key Expansion
algorithm.

(b) Addition of Initial Round Key: A bitwise-XOR operation of initial roundkey (k0) is carried out
with the input data of 128 bits.

(c) 9 Rounds of Transformations: Following transformations take place in each round, for a total of
nine rounds. As a round is completed, it goes to the beginning of round until completion of 9
rounds. The key changes in each round from (k1) all the way to k(9).

• SubBytes : Each byte of the state is substituted non-linearly using Rijndael S-box.

• ShiftRows: The 16 byte data is arranged in 4 by 4 grid, and shiftRows transformation ( ) is
carried out in the grid.

• MixColumns: The columns of the 4×4 matrix is multiplied to a mix colmns matrix to obtain
output.

• AddRoundKey: A bitwise-XOR operation of the expanded roundkey is carried out with the
data of 128 bits.

(d) 10th Round:

• SubBytes : Each byte of the state is substituted non-linearly using Rijndael S-box.

• ShiftRows: The 16 byte data is arranged in 4 by 4 grid, and shiftRows transformation ( ) is
carried out in the grid.

• AddRoundKey: A bitwise-XOR operation of the expanded roundkey is carried out with the
data of 128 bits.

2. Decryption Algorithm

(a) Initial round:

• AddRoundKey: A bitwise-XOR operation with last part of the expanded roundkey(k10) is
carried out with the encrypted data of 128 bits.

• invShiftRows: Iverse shift row() transformation is done on the output from the step above.

• invSubBytes : Each byte of the state is substituted non-linearly using Rijndael S-box.

(b) 9 Rounds of Transformations: Following transformations take place in each round, for a total of
nine rounds. As a round is completed, it goes to the beginning of round until completion of 9
rounds. The key changes in each round for (k9) all the way to k(1).

• AddRoundKey: A bitwise-XOR operation of the expanded roundkey is carried out with the
data of 128 bits.

• invMixColumns: The columns of the 4 × 4 matrix is multiplied to a inv mix colmns matrix
to obtain output. The inv mix colmns matrix is the inverse of mix colmns matrix in GF (28).

• invShiftRows: Iverse shift row() transformation is done on the output from the step above.

• invSubBytes : Each byte of the state is substituted non-linearly using Rijndael S-box.

(c) 10th Round: The ouput from the above step is now XOR’ed with the intial round key (k0)
generated through key expansion algorithm.
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3. Key addition and inversion

3.1. Add Round Key

Figure 2: Inverse Add Round Key Pseudo Circuit

In Galios Field(28) the addition operator is realized by bitwise
⊕

operation. AES encryption is based on
Galios Field(28). The add round key operation is performed by using bitwise

⊕
operator. This operation

defines the relationship between the key used in the encryption and the data. With the initial decided key
that is shared by two concerned organization, both organization employ key expansion methods to produce
10 more keys.[4] Add round key is employed 11 different times to mask the data to be encrypted.

• Pseudo Code for Add Round Key

Output of Add Round Key = 128-Bit Input Data
⊕

128-Bit Key

The 128-Bit data and 128-Bit key are both arranged in 4 × 4 matrix for graphical representation. Each
element in the matrix cell in 8-Bit data. Corresponding element from key matrix and data matrix are taken
and bit wise

⊕
operation is performed to obtain the output as shown in the table 18.In hardware level, the

linear busses are arranged for the required configuration instead of creating a 2D busses.

Figure 3: Add Round Key Schematics.

Table 2: Add Round Key

D0 D4 D8 D12 K0 K4 K8 K12 A0 A4 A8 A12

D1 D5 D9 D13 K1 K5 K9 K13 A1 A5 A9 A13

D2 D6 D10 D14
⊕

K2 K6 K10 K14 = A2 A6 A10 A14

D3 D7 D11 D15 K3 K7 K11 K15 A3 A7 A11 A15

Input Data Key Output

14



3.2. Inverse Add Round Key

Figure 4: Add Round Key Pseudo Circuit

Bitwise
⊕

toggles the bits of input data, whenever there is ‘1’, is the corresponding bit of the Key used
in add round key. Hence, repeating the process using the same key again toggles the same bits to produce
the original data. In terms of abstract algebra, in Galois Field(28) each number is its own additive inverse.[4]
Hence, the addition operator is realized by bitwise

⊕
operation and the subtraction operator is also realized

by the bitwise
⊕

operation. The inverse add round key operation is performed by using bitwise
⊕

operator
between the cryptic data and the same key used to create the cryptic data from the original one.

• Pseudo Code for Add Round Key

Original Data = Cryptic Data
⊕

128-Bit Key

Figure 5: Inverse Add Round Key Schematics.

Table 3: Inverse Add Round Key

A0 A4 A8 A12 K0 K4 K8 K12 D0 D4 D8 D12

A1 A5 A9 A13 K1 K5 K9 K13 D1 D5 D9 D13

A2 A6 A10 A14
⊕

K2 K6 K10 K14 = D2 D6 D10 D14

A3 A7 A11 A15 K3 K7 K11 K15 D3 D7 D11 D15

Cryptic Data Key Original Data
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4. Substitution Operation

4.1. Substitution bytes( ) Transformation

Figure 6: Substitution Bytes Pseudo Circuit

The Sub-bytes Transformation( ) is a byte substitution operation performed on each individual byte of the
128-bit data. Each byte is substituted to a different byte using a well-defined substitution box called S-box.
S-box contains a mapping of each byte from 00 to FF.

fig: AES-Substitution Box

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

a E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

b E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

c BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

d 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

e E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

f 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

The S-box is constructed by performing the following transformation:

• Calculate the multiplicative inverse in the finite field GF(28) of the byte.

• Apply the following transformation to the byte:
b
′

i = bi
⊕

b(i+4)mod8

⊕
b(i+5)mod8

⊕
b(i+6)mod8

⊕
b(i+7)mod8

⊕
ci

Here, bi represents ith bit of the byte and ci represents ith of a constant byte with a value of 63.
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The second operation is performed in each bit of the entire byte b0 through b7[[5]]. As the above two
transformations are performed in each byte ranging from 00 to FF, a S-box is generated which contains
the unique mapping of each byte as shown below:

And, the substitution byte for the input byte is determined by looking at the intersection of row and
column. For example, the substitution byte of 59 will the intersection of a row with index ’5’ and column
with index ’9’ which is cb. It can be located in the substitution box below.

• Pseudo code for substitution byte transformation :

S-box( data[0:7], substituted-data[0:7])
This is for the first byte and it goes all the way down to 16th byte where a byte is mapped to a different
byte using the S-box.

Table 4: Sub bytes () Transformation

A0 A4 A8 A12 S0 S4 S8 S12

A1 A5 A9 A13 S1 S5 s9 S13

A2 A6 A10 A14 = S2 S6 S10 S14

A3 A7 A11 A15 S3 S7 S11 S15

The schematics of sub-bytes( ) transformation is shown below:

Figure 7: Sub-bytes Schematic View
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4.2. Inverse Sub-bytes( ) Transformation

Figure 8: Inverse Substitution Bytes Pseudo Circuits

The Inverse Sub-bytes( ) Transformation is also a byte substitution operation performed on the individual
byte of the 128-bit data during decryption. It is similar to sub-bytes( ) Transformation where each byte is
substituted to a different byte using a well-defined substitution box called Inverse S-box. Just like S-box,
this also contains a mapping of each byte from 00 to FF and is inverse of the S-box.

And, the substitution byte for the input byte is determined by looking at the intersection of row and
column. For example, the substitution byte of cb will the intersection of a row with index ’c’ and column
with index ’b’ which is 59. This can be located in the Inverse Substitution box below.

fig: AES-Inverse Substitution Box

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB

1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB

2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E

3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25

4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92

5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84

6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06

7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B

8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73

9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E

a 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B

b FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4

c 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F

d 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF

e A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61

f 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

• Pseudo code for Inverse substitution byte transformation :

Inverse-S-box( data[0:7], inverse-data[0:7])
This is for the first byte and it goes all the way down to 16th byte where a byte is mapped to a different
byte using inverse S-box.
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Table 5: Inverse Sub bytes () Transformation

S0 S4 S8 S12 A0 A4 A8 A12

S1 S5 S9 S13 A1 A5 A9 A13

S2 S6 S10 S14 = A2 A6 A10 A14

S3 S7 S11 S15 A3 A7 A11 A15

The schematics of inverse sub-bytes( ) transformation is shown below:

Figure 9: Inverse Sub-bytes Schematic View
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5. Shifting Operation

5.1. Shift-Rows() Transformation

Figure 10: Shift Rows Pseudo Circuits

The shift rows() transformation is about shifting bytes in each row of a matrix by a certain offset as deter-
mined in the algorithm. The data are arranged in a 4 by 4 grid which is shown in the figure below. The
following transformation is applied in each row[5]:

• The first row is left unchanged.

• The bytes in the second row are shifted one position to the left.

• The bytes in the second row are shifted two positions to the left.

• The bytes in the second row are shifted three positions to the left.

The array of bytes before and after transformation is shown below:

Table 6: Shift Rows () Transformation

S0 S4 S8 S12 S0 S4 S8 S12

S1 S5 S9 S13 S5 S9 s13 S1

S2 S6 S10 S14 = S10 S14 S2 S6

S3 S7 S11 S15 S15 S3 S7 S11

• Pseudo code for shift rows( ) transformation :

shifted byte[0:7] = substituted byte[0:7]
shifted byte[8:15] = substituted byte [104:11]
shifted byte[16:23] = substituted byte [80:87]
shifted byte [24:31] = substituted byte [53:63]
This is for the first column, and the pattern is similar for all the other columns as shown in figure
above.
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5.2. Inverse Shift-Rows() Transformation

Figure 11: Inverse Shift Rows Pseudo Circuits

The Inverse shift rows() transformation is about shifting bytes in each row of a matrix by a certain offset as
determined in the algorithm during decryption. The following transformation is applied in each row:

• The first row remains unchanged.

• The bytes in the second row are shifted one position to the right.

• The bytes in the second row are shifted two positions to the right.

• The bytes in the second row are shifted three positions to the right.

The array of bytes before and after transformation is shown below:

Table 7: Inverse Shift Rows () Transformation

S0 S4 S8 S12 S0 S4 S8 S12

S1 S5 S9 S13 S13 S1 s5 S9

S2 S6 S10 S14 = S10 S14 S2 S6

S3 S7 S11 S15 S7 S11 S15 S3

• Pseudo code for inverse shift rows/( ) transformation :
inverse shifted byte[0:7] = inverse mix-column byte[0:7]
inverse shifted byte[8:15] = inverse mix-column byte [40:47]
inverse shifted byte[16:23] = inverse mix-column byte [80:87]
inverse shifted byte [24:31] = inverse mix-column byte [120:127]

This is for the first column, and the pattern is similar for all the other columns as shown in figure
above.
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6. Column Operations

6.1. Mix Column

Figure 12: Mix Column Pseudo Circuits

Mix Column operation is a crucial part of AES Encryption Decryption. Mix Column utilizes finite field
arithmetic in Galois Field(28). 128-bit data is accepted in each mix column operation and it returns 128-bit
data[5]. The 128-bit data entered is arranged in a 4 × 4 matrix. The 4 × 4 matrix contains 16 elements as
shown in table 8. Each element is of size 8 bit which can be represented by 2 hexadecimal characters.

Table 8: Mix Col Matrix and Input Data Matrix

Mix Col Matrix Input Data Matrix

02 03 01 01 D0 D4 D8 D12

01 02 03 01 and D1 D5 D9 D13

01 01 02 03 D2 D6 D10 D14

01 01 02 03 D3 D7 D11 D15

After the input data is arranged in 4×4 matrix, it undergoes matrix multiplication with the Mix Col
Matrix as shown is table 9.

Table 9: Mix Column Operation

Mix Col Matrix Input Data Matrix Output Data Matrix

02 03 01 01 D0 D4 D8 D12 O0 O4 O8 O12

01 02 03 01 × D1 D5 D9 D13 = O1 O5 O9 O13

01 01 02 03 D2 D6 D10 D14 O2 O6 O10 O14

01 01 02 03 D3 D7 D11 D15 O3 O7 O11 O15

Column Wise multiplication is visualized in table 10.

Table 10: Column wise multiplication in Mix Col Operation

Mix Col Matrix Input Col Output Col

02 03 01 01 Dn On

01 02 03 01 × Dn+1 = On+1

01 01 02 03 Dn+2 O n + 2

01 01 02 03 Dn+3 On+3

n ∈ {0, 4, 8, 12}
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The matrix multiplication only involves multiplication by 01,02 and 03 in Galios Field(28) .

• Irreducible Polynomial
The irreducible polynomial x8 + x4 + x3 + x + 1 is utilized if our multiplication operation exceeds 8
bits. Since, our multiplication only involves multiplication by 01,02 and 03, the irreducible operation
only needs to be subtracted once. This will provides us the remainder when our 9 bit output is divided
by the irreducible polynomial. But, since we onlyt need 8 bit as our output, we can ignore the ninth
bit from the beginning and just utilize x4 + x3 + x + 1 as our irreducible polnomial.

• Example of Remainder

Table 11: Remainder of 100000000 when divided by irreducible polynomial (2ˆ8)

Binary Position 8 7 6 5 4 3 2 1 0

8 1 0 0 0 0 0 0 0 0

(8+4+3+1+0) * 0 1 0 0 0 1 1 0 1 1

XOR Remainder 0 0 0 0 1 1 0 1 1

Binary 0 0 0 0 1 1 0 1 1

Hex 1 B

• Multiplication by 01
Multiplication by one returns the original input as nothing is changed.

Figure 13: Pseudo Circuit for multiplication by 1

• Multiplication by 02

Table 12: Algorithm for Multiplication by 2

Input a b c d e f g h

is a=1 or 0

temp b c d e f g h 0 Shift 1 to left

if a is 1

Output temp
⊕

irreducible polynomial

if a is 0

Output temp
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Figure 14: Pseudo Circuit for multiplication by 2
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• Multiplication By 03
In Galois Field(28) , multiplication is distributive over addition. Hence multiplication by 03 can be
converted to multiplication by one and two.

input× 03 = input× (11) = input× (10⊕ 01) = input× 10⊕ input× 01 = input× 2⊕ input

Thus, utilizing multiplication by 02, we can achieve multiplication by 03.

Figure 15: Pseudo Circuit for multiplication by 3

• Addition
Addition in GF(28) is simply bitwise xor operation.

Figure 16: Pseudo Circuit for multiplication by 3

Hence, Mix Column operation is conducted in GF(28) feild using the above principle of multiplication and
addition.
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data_in[0:127]

COL1

inv_GF_2_8_multiplier

data1[7:0]

data2[7:0]

data3[7:0]

data4[7:0]

multiplied_data1[7:0]

multiplied_data2[7:0]

multiplied_data3[7:0]

multiplied_data4[7:0]

COL2

inv_GF_2_8_multiplier

data1[7:0]

data2[7:0]

data3[7:0]

data4[7:0]

multiplied_data1[7:0]

multiplied_data2[7:0]

multiplied_data3[7:0]

multiplied_data4[7:0]

COL3

inv_GF_2_8_multiplier

data1[7:0]

data2[7:0]

data3[7:0]

data4[7:0]

multiplied_data1[7:0]

multiplied_data2[7:0]

multiplied_data3[7:0]

multiplied_data4[7:0]

COL4

inv_GF_2_8_multiplier

data1[7:0]

data2[7:0]

data3[7:0]

data4[7:0]

multiplied_data1[7:0]

multiplied_data2[7:0]

multiplied_data3[7:0]

multiplied_data4[7:0]

inverse_mixdata[0:127]
0:7

8:15

16:23

24:31

32:39

40:47

48:55

56:63

64:71

72:79

80:87

88:95

96:103

104:111

112:119

120:127

7:0

7:0

7:0

7:0

7:0

7:0

7:0

7:0

7:0

7:0

7:0

7:0

7:0

7:0

7:0

7:0

Figure 17: Schematic View of Mix Columns
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6.2. Inverse Mix Column

Figure 18: Inverse Mix Column Pseudo Circuits

Inverse Mix Column operation inverts the changes performed to Mix Column. [4] It utilizes finite field
arithmetic in Galois Field(28). 128-bit data is accepted in each inverse mix column operation and it returns
128-bit data. The 128-bit data entered is arranged in a 4× 4 matrix. The 4× 4 matrix contains 16 elements
as shown in table 13. Each element is of size 8 bit which can be represented by 2 hexadecimal characters.

Table 13: Inverse Mix Col Matrix and Input Data Matrix

Inv Mix Col Matrix Input Data Matrix

0E 0B 0D 09 D0 D4 D8 D12

09 0E 0B 0D and D1 D5 D9 D13

0D 09 0B 0D D2 D6 D10 D14

0B 0D 09 0E D3 D7 D11 D15

After the input data is arranged in 4×4 matrix, it undergoes matrix multiplication with the Inv Mix Col
Matrix as shown is table 14.

Table 14: Inv Mix Column Operation

Inv Mix Col Matrix Input Data Matrix Output Data Matrix

0E 0B 0D 09 D0 D4 D8 D12 O0 O4 O8 O12

09 0E 0B 0D × D1 D5 D9 D13 = O1 O5 O9 O13

0D 09 0B 0D D2 D6 D10 D14 O2 O6 O10 O14

0B 0D 09 0E D3 D7 D11 D15 O3 O7 O11 O15

Column Wise multiplication is visualized in table 15.

Table 15: Column wise multiplication in Inv Mix Col Operation

Inv Mix Col Matrix Input Col Output Col

0E 0B 0D 09 Dn On

09 0E 0B 0D × Dn+1 = On+1

0D 09 0B 0D Dn+2 O n + 2

0B 0D 09 0E Dn+3 On+3

n ∈ {0, 4, 8, 12}
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The matrix multiplication only involves multiplication by 0E,0B,0D, and 09 in Galois Field(28).

• Multiplication by 09

input× 09 = input× (00001001) = input× (1000⊕ 0001) = (input× 1000)⊕ (input× 0001)

input× 1000 = input× (10)× (10)× (10) = input× 2× 2× 2

input× 0001 = input

Hence,
input× 09 = (input× 2× 2× 2)⊕ (input)

Figure 19: Pseudo Circuit for multiplication by 09

• Multiplication by 0B

input×0B = input×(00001011) = input×(1000⊕0010⊕0001) = (input×1000)⊕(input×0010)⊕(input×0001)

input× 0B = (input× 2× 2× 2)⊕ (input× 2)⊕ (input)

Smart Implementation by reducing repetition:

input× 0B = (((input× 2× 2)⊕ input)× 2)⊕ input

Figure 20: Pseudo Circuit for multiplication by 0B
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• Multiplication by 0D

input×0D = input×(00001101) = input×(1000⊕00100⊕0001) = (input×1000)⊕(input×0100)⊕(input×0001)

input× 0D = (input× 2× 2× 2)⊕ (input× 2× 2)⊕ (input)

Smart Implementation by reducing repetition:

input× 0D = (((input× 2)⊕ input)× 2× 2)⊕ input

Figure 21: Pseudo Circuit for multiplication by 0D

• Multiplication by 0E

input×0E = input×(00001110) = input×(1000⊕00100⊕0010) = (input×1000)⊕(input×0100)⊕(input×0010)

input× 0E = (input× 2× 2× 2)⊕ (input× 2× 2)⊕ (input× 2)

Smart Implementation by reducing repetition:

input× 0E = (((input× 2)⊕ input)× 2)⊕ input)× 2

Figure 22: Pseudo Circuit for multiplication by 0E
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Figure 23: Schematic View of Inverse Mix Columns
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7. Key Expansion

Figure 24: Key Generation pseudo circuit

Overview : Round Keys required for each AddRoundKey iteration is derived from a single Cipher Key
by the means of the KeyExpansion algorithm. In AES 128, we have 11 total key additions that require 11
keys[3]. Each key is 128 bit and is divided into 4 words of 1 byte length to perform mathematical operation.
The first four words i.e w[0],w[1],w[2],w[3] contains the input cipher key. The key expansion Pseudocode is
given below:

Figure 25: Key Generation pseudo code

Initially, the input cipher key is divided into four 32 bit words; w[0], w[1], w[2], and w[3]. We call this
round zero. We use the word which contains the least significant bits of the previous key (w[3], w[7], w[11]..)
and passes it sequentially to ROTWORD, then SUBBYTE, and then bitwise XOR with RCON. Then, the
temp result and other previous words are used to calculate further words as we go along. At i = 10, we get
our final word, w[43], and thus 11 keys are generated. The key expansion is designed in such a way that
if a single bit in the input key sequence changes, it would affect every other key generated afterward. We
explain the main operations; ROTWORD, SUBBYTE, and RCON below:
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7.1. SubByte, Rotword and RoundConstant ( Rcon)

RotWord

RotWord performs a one-byte circular left shift on a word. This means that an input word [B0, B1, B2, B3]
is transformed into [B1, B2, B3, B0].[3]

Subword

SubByte performs a byte substitution on each byte of its input word, using the Rijndael S-box as de-
scribed above in Section 5.1. [3]

Rcon

Rcon, as described by the Rijndael documentation, is the exponentiation of 2 to a user-specified value.
This operation is not performed with regular integers, rather in Rijndael’s finite field. RCON could be
expressed as:

Figure 26: Round Constant(RCON)

where multiplication is defined in the Galius Field (GF(28)). [3]

Round 1 2 3 4 5 6 7 8 9 10

Hex 01 02 04 08 10 20 40 80 1b 36

Dec 01 02 04 08 16 32 64 128 27 54

Let look at Rcon(9) ,
Rcon(9) = 2 ∗Rcon(9− 1)

Rcon(9) = 2 ∗Rcon(8)

Since the mulitplication is over (GF (28)),

Rcon(9) = 2 ∗Rcon(8)mod(x8 + x4 + x3 + x + 1)

Rcon(9) = 256mod(x8 + x4 + x3 + x + 1)

Now, 256 in polynomial form is 1 ∗ x8 where x = 2. So our operation returns as :

Rcon(9) = 8mod(8 + 4 + 3 + 1 + 0)

where the numbers represent the powers of the binary number. We illustrate this operation below:
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Table 16: Round Constant(RCON) Generation Over Galios Field (2ˆ8)

Binary Position 8 7 6 5 4 3 2 1 0

8 1 0 0 0 0 0 0 0 0

(8+4+3+1+0) * 0 1 0 0 0 1 1 0 1 1

XOR Remainder 0 0 0 0 1 1 0 1 1

Binary 0 0 0 0 1 1 0 1 1

Hex 1 B
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7.2. Key Expansion in Pictures

Figure 27: AES 128 Key Schedule
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Figure 28: AES 128 Key Expansion Schematics
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8. UART

8.1. UART for 8 bit Data Transfer

When we talk about connecting our phone to a computer or vice-versa for any kind of file transfers, USB
is the most widely used interface which allows from charging our phones to sending/receiving files at a high
speed to and from another device. In a similar manner, for hardware communication purposes, or simply
communicating FPGA with a computer, we need an interface and protocols that govern the transfer and
receiving of data. UART is one of the simplest and widely used methods of talking to the FGPA using a
computer and also communicating different FPGAs.

UART stands for Universal Asynchronous Receiver/Transmitter. By definition, it is a hardware commu-
nication protocol that uses asynchronous serial communication with configurable speed where asynchronous
means there is no clock signal to synchronize the output bits from the transmitting device going to the
receiving end. A UART is an interface that sends out usually a byte at a time over a single wire. Embedded
systems, micro-controllers, and computers mostly use UART as a form of device-to-device hardware commu-
nication protocol as well as a way to talking to the FPGAs. Two UARTs directly communicate with each
others using two wires for their transmitting and receiving ends.

The two signals of each UART device are named Transmitter(Tx) and Receiver(Rx). The main motive
of a transmitter and receiver line for each device is to transmit and receive serial data intended for serial
communication. The UART transmitter and receiver have to agree on some parameters, such as:

• Baud Rate: 9600

• Number of data bits: 8

• Parity Bit : 0

• Stop Bits: 1

• Flow Control: None

Baud rate: The frequency at which the receiver captures the incoming bits and colloquially, the frequency
at which the transmitter sends the outgoing bits.

The number of data bits: It is set to eight bits at a time. That means, in each round, a byte is sent over
the channel.

Parity bit: It is to check the validity of the transmitted data over UART, and is appended after the data
is sent which is calculated by doing an XOR operation on all of the bits.

Stop Bits: A stop is always set is 1, and it indicates the end of transmission of a byte.

Flow Control: It is likely to be set to None, and is not widely used in present days applications.
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Figure 29: UART

Working Mechanism:
1) Uart receives parallel data from the data bus and creates a serial packet and adds a start bit stop bit and
a parity bit.
2) Start bit pulls UART line to 0 (usually kept at 1), which indicates the receiver to capture incoming data
while stop bit will stop communication by pulling the line back to 1.
3) The receiver will ignore start, stop, and parity bits and captures data into the parallel stream, and sends
it to the data buses. [1]

Now, we will talk about the UART transmitter and UART receiver in details.
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9. UART 128 bits

9.1. Baud Rate

Baud rate is the rate at which information is transferred in a communication channel that includes the
number of bits exchanged per second in serial communication between two devices. It is quite important in
the UART channel as UART protocol is asynchronous and thus, is necessary for the transmitter and receiver
to transfer and receive the data at the same speed. In the serial port, the baud rate of ”9600 baud” means
a maximum of 9600 bits of data can be transferred per second.

For example, the FPGA board has a 100 Mhz clock cycle, with a baud rate of 9600 bits per seconds,
each bit is being transferred and received every 10417 cycles (i.e. 100000000 cycles/sec — 9600 bits/sec).
And, each bit is being captured exactly in the midway of 10417 cycles for the consistency and accuracy of
the data.

The UART line stays at logic high ’1’, and a transmitter is activated, with start bit ’0’, the line is active
and transmits 8 bits serially, the end recognized by the stop bit ’1’, and then the UART line stays at high
logic ’1’ and wait for the next stream of data. A similar procedure occurs in the receiver side, which remains
at logic high ’1’ and as it receives the start bit ’0’, it captures the next 8 bits of data at the baud rate serially
and remains logic high ’1’ at the completion and wait for the next stream of bits. [2]

Table 17: Baudrate and clocks per bit selection

FPGA clock speed 100MHZ

Baud rate 9600 bits per seconds

clock per bits 10417 clock cycles per bit

9.2. Uart Transmitter

Figure 30: UART-128 bit Transmitter Input Output
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Table 18: Input/Output wire for Uart Transmitter

I/O Wire Size(bit) Utilization

clock 1 Clock for operations

data 128 data that needs to be sent

data state 1 Data state is a flag that initiates the transmitter module.

Input reset 1 Resets the transmitter to state Init.

Output data out tx 1 Output pin.

Figure 31: UART-128 bit Transmitter State Diagram

39



1. Init: In this state is the transmitter goes to state setup if the data state flag from the receiver is 1.

Figure 32: State Init

2. Setup:In this state, the transmitter breaks the 128 bit data into 16 8bit chunks, assigns start and
stops bits making it 10 bits of data and passes it to the next state i.e. Write Data.

Figure 33: State Setup
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3. Write Data:In this state, the transmitter sends the chunk of data received from Setup state and
assigns it to the output transmitter pin every clocks per bits number of cycles. If the number of bytes
sent is 16 then it goes to state Init. If the number of bytes sent is not 16 , it increments the number
of bytes sent counter by 1 ignoring the start and stop bits and goes to state Setup again.

Figure 34: State Writedata
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9.3. Uart Receiver

Figure 35: UART-128 bit Receiver Input Output

Table 19: Input/Output wire for Uart Reciever

I/O Wire Size(bit) Utilization

clock 1 Clock for operations

Input data in 1 It represents the pin that acts as reciever for FPGA.

data out 128 Output pin.

Output data state 1 Flag that represents new set of 128 bit has been received.

Figure 36: UART-128 bit Receiver State Diagram
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1. Init: The FPGA waits until Data in = 0 and then goes to Start.

Figure 37: State Init

2. Start: It waits for half clocks per bits and checks if the Data in is still 0. If Data in is still 0, it
proceeds to next state i.e. Read.

Figure 38: State Start
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3. Read:In this state, the receiver reads 8 bits of data from the Data in pin every clock per bits cycle
and increments the number of bytes received by 1. Then, it proceeds to next state i.e. Stop.

Figure 39: State Read data

4. Stop:In this state, the receiver checks is the number of bytes received is 16 or not. If it has received
16 bytes of data, it updates the data out register and also sends a flag that new data has been
received.Then, it proceeds to next state i.e. Init.

Figure 40: State Stop
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5. Every Clock Cycle: Every rising edge of FPGA clock, the device checks if the state is stop or init.
If the state is stop, then it saves the 8 bit acquired data to a temporary input. It also check if the total
acquired data is 128 data and released the 128 bit to the output of receiver.
If the state is init then, it clears the output of data after waiting for clock per bit times 160 clock
cycles.

Figure 41: Every rising edge of FPGA clock
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10. Pipelined Implementation

The entire process of encryption and decryption is broken down to small steps which are pipelined for efficient
transmission of files.

Figure 42: Full AES Encryption, Decryption and Key Generation.
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10.1. Encryption Pipeline

This is the encryption process. Key generation is a circuit without registers so they are ignored. Appropriate
keys are passed at appropriate circuits.

Figure 43: Full AES 128 bit Encryption.

10.1.1. Division of encryption circuit into three parts

The full encryption shown in figure 43 is broken down to three chunks as shown in figure 44. These three
chunks as combined to form three circuits as shown in figure 45.

Figure 44: Encryption Broken down to different parts that can be in turn implemented to state machine.
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10.1.2. Three circuits for Encryption

Each of these circuit take in 128 bit data and output 128 bit data. Combination of these three circuits
represents complete encryption. The circuit First has three parts as the inital circuit has only add roundkey
whilst Between circuit and Final Circuit are more complex.

Figure 45: Three main circuit for Encryption.

Each of these three circuit are combine with a state machine circuit. The state machine circuit algorithm
is shown in figure 46. The FSM circuit takes a data state and 128 bit data as input.The FSM assigns the
128 bit data to the circuit associated with it. After waiting for clock per bit times 16 clock cycles, the FSM
changes the output of to the new 128 bit data which is the output of the device associated with it. It also
sends a completion flag (data state)as output.
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Figure 46: State machine implementation of different part of Encryption.
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10.1.3. Final Encryption Pipeline

Figure 47: Final Encryption Pipeline

Each of these devices above i.e. First, Between and Last has the following input and output as shown in
the table 20. The encode state is connected to data state of the next circuit and the data out is connected
to the data in of the next circuit.

Table 20: Input/Output wires for First, Between and last

I/o Wire Size

data in 128

Input data state 1

data out 128

Output encode state 1

These are wires which are connected to internal registers
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10.2. Decryption Pipeline

This is the decryption process. Key generation is a circuit without registers so they are ignored. Appropriate
keys are passed at appropriate circuits.

Figure 48: Full AES 128 bit Decryption.

10.2.1. Division of decryption circuit into three parts

The full decryption shown in figure 48 is broken down to three chunks as shown in figure 49. These three
chunks as combined to form three circuits as shown in figure 50.

Figure 49: Decryption broken down to different parts that can be in turn implemented to state machine.
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10.2.2. Three circuits for Decryption

Each of these circuit take in 128 bit data and output 128 bit data. Combination of these three circuits
represents complete encryption. The circuit Last has three parts as the final circuit has only add roundkey
whilst between circuit and First Circuit are more complex.

Figure 50: Three main circuit for Decryption.

Each of these three circuit are combined with a state machine circuit. The state machine circuit algorithm
is shown in figure 51. The FSM circuit takes a data state and 128 bit data as input.The FSM assigns the
128 bit data to the circuit associated with it. After waiting for clock per bit times 16 clock cycles, the FSM
changes the output of to the new 128 bit data which is the output of the device associated with it. It also
sends a completion flag (data state)as output.

52



Figure 51: State machine implementation of different part of Decryption.
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10.2.3. Final Decryption Pipeline

Figure 52: Final Decryption Pipeline

Each of these devices above i.e. First, Between and Last has the following input and output as shown in
the table 21. The encode state is connected to data state of the next circuit and the data out is connected
to the data in of the next circuit.

Table 21: Input/Output wires for First, Between and last

I/o Wire Size

data in 128

Input data state 1

data out 128

Output encode state 1

These are wires which are connected to internal registers
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10.3. Full Implementation

Finally each of these devices i.e. receiver, encrypter/decrypter and transmitter are connected. Receiver takes
in data, completes receiving 128 bit data and outputs the 128 bit data and a completion flag. When the
encrypter/decrypter sees a completion flag, it starts to encrypt/decrypt the data. Once encrypter/decrypter
completes encryption/decryption, it outputs the encrypted/decrypted data along with a completion flag.
Once the transmitter sees a completion flag, it starts to transmit the 128 bit data which is the output of
encrypter/decrypter. The python codes is created with encryption/decryption requirement of 128 bit data.

Figure 53: State machine implementation of different parts of Encryption

Python data sender code reads a file, and makes it a multiple of 128 bit by adding 8’b11111111 multiple
times at the end of the data. Similarly, the python receives code, reads data and ends reading data whenever
it encounter 8’b1111111. Hence, the data used to convert out data to a multiple of 128 bit is also used as
end flag by receiver.
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11. Result

11.1. Simulation for encryption with uart

Figure 54: Final implementation, Computer to FPGA with encryption

11.2. Simulation for decryption with uart

Figure 55: Final implementation, FPGA to Computer with decryption

11.3. FPGA Implementation

A large sized text is sent from computer and the another computer receives the data. The data is received
without corruption. The encryption and decryption process is hidden from the user. There is a latency of
30 ms due to receiving and transmitting process along with encryption and decryption process.
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12. Challenges

1. Timing Challenges
Hardware Description Language describes hardware. It was quite challenging to grasp concurrent
programming intuition. It was also hard to think parallel. Timing error arised due to pre-release of
data output by a circuit which was less than the setup time.

Figure 56: Timing error without pipeline of encryption/decryption

Figure 57: Timing error with pipeline of encryption/decryption: 2 circuits

Figure 58: Timing validation with pipeline of encryption/decryption with 5 circuits

Similarly, error occurred due to mis-matched receiver and transmitter. This is because with real time
communication, there is no storing of data and data are passed from registers to registers until it is
processed.

2. Time management
Just as every other group project, it was tiresome to toggle schedules based on everyone’s need.

3. Need Knowledge of Abstract Algebra
Strong knowledge of Abstract Algebra was required to implement the AES algorithm on hardware
level. Extra study on the subject material was required.
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13. Conclusion

The project was successful in realizing the objectives set at the very beginning. The FPGA Implementation of
AES 128 algorithm is capable of accepting and transmitting data, regardless of size, from either a computer or
another FPGA, perform encryption/decryption and communicate using the UART communication channel.
Its features and cost makes it well suited for any low cost embedded application in the field of data security.
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14. Verilog : Encryption(CODE)

14.1. encryption main.v

module encryption_main(

clk,

data,

rx_state,

key,

encrypted_data,

encrypted_data_state

);

input clk;

input rx_state;

input [0:127] key;

input [0:127] data;

output [0:127] encrypted_data;

output encrypted_data_state;

wire [0:127] key_0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10;

key keygen(key,key_0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10);

main_encrypt encode(clk,data,rx_state,encrypted_data,encrypted_data_state,

key_0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10);

endmodule

14.2. main encrypt.v

`timescale 1ns / 1ps

module main_encrypt(

clk,

data,

rx_state,

encrypted_data,

encrypted_data_state,

key_0,key_1,key_2,key_3,key_4,

key_5,key_6,key_7,key_8,key_9,

key_10

);

input clk,rx_state;

input [0:127] data;

output [0:127] encrypted_data;

output encrypted_data_state;

input [0:127] key_0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10;

wire [0:127] encoded_data_1,encoded_data_2,encoded_data_3,encoded_data_4;

wire encoded_state_1, encoded_state_2, encoded_state_3, encoded_state_4;
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encrypt_first first(clk, data ,key_0,key_1,key_2,

rx_state ,encoded_data_1,encoded_state_1 );

encrypt_mid mid1 (clk,encoded_data_1,key_3,key_4 ,

encoded_state_1,encoded_data_2,encoded_state_2 );

encrypt_mid mid2 (clk,encoded_data_2,key_5,key_6 ,

encoded_state_2,encoded_data_3,encoded_state_3 );

encrypt_mid mid3 (clk,encoded_data_3,key_7,key_8 ,

encoded_state_3,encoded_data_4,encoded_state_4 );

encrypt_final last (clk,encoded_data_4,key_9,key_10 ,

encoded_state_4,encrypted_data,encrypted_data_state);

endmodule

14.3. encrypt first.v

`timescale 1ns / 1ps

`timescale 1ns / 1ps

module encrypt_first(

clk,

data,

key1,key2,key3,

data_state,

encoded_data,

encoded_state

);

input [127:0] data,key1,key2,key3;

input clk,data_state;

output [127:0]encoded_data;

output encoded_state;

//change these to change baud rate

parameter clock_speed=100000000;//speed of the FPGA clock

parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;

// number of clock cycles your hardware can afford per bit

//states

reg state=1'b0;//STATES

localparam init=1'b0,encode=1'b1;//states

reg [127:0] temp_encoded_data=0;

reg temp_encoded_state=0;;

reg[24:0] clock_counter=25'b0;//counts how many clock cycles passed

wire [127:0] tempered_data1,tempered_data2,tempered_data3;
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main_first DUM1(data,tempered_data1,key1);

main_mid DUM2(tempered_data1,tempered_data2,key2);

main_mid DUM3(tempered_data2,tempered_data3,key3);

always@(posedge clk) begin

case (state)

init:

begin

if (clock_counter==clock_per_bit<<4)

begin

temp_encoded_state<=1'b0;

end

else

begin

clock_counter<=clock_counter+1;

end

if (data_state==1)

begin

clock_counter<=0;

state<=encode;

end

end

encode:

begin

if (clock_counter==clock_per_bit*159)

begin

temp_encoded_state<=1'b1;

temp_encoded_data<=tempered_data3;

clock_counter<=0;

state<=init;

end

else if(clock_counter==clock_per_bit<<4)

begin

temp_encoded_state<=1'b0;

clock_counter<=clock_counter+1;

end

else

begin

clock_counter<=clock_counter+1;

end

end

endcase

end

assign encoded_state=temp_encoded_state;

assign encoded_data=temp_encoded_data;

endmodule
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14.4. encrypt mid.v

`timescale 1ns / 1ps

`timescale 1ns / 1ps

module encrypt_mid(

clk,

data,

key1,key2,

data_state,

encoded_data,

encoded_state

);

input [127:0] data,key1,key2;

input clk,data_state;

output [127:0]encoded_data;

output encoded_state;

//change these to change baud rate

parameter clock_speed=100000000;//speed of the FPGA clock

parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;

// number of clock cycles your hardware can afford per bit

//states

reg state=1'b0;//STATES

localparam init=1'b0,encode=1'b1;//states

reg [127:0] temp_encoded_data=0;

reg temp_encoded_state=0;;

reg[24:0] clock_counter=25'b0;//counts how many clock cycles passed

wire [127:0] tempered_data1,tempered_data2;

main_mid DUM1(data,tempered_data1,key1);

main_mid DUM2(tempered_data1,tempered_data2,key2);

always@(posedge clk) begin

case (state)

init:

begin

if (clock_counter==clock_per_bit<<4)

begin

temp_encoded_state<=1'b0;

end

else
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begin

clock_counter<=clock_counter+1;

end

if (data_state==1)

begin

clock_counter<=0;

state<=encode;

end

end

encode:

begin

if (clock_counter==clock_per_bit*159)

begin

temp_encoded_state<=1'b1;

temp_encoded_data<=tempered_data2;

clock_counter<=0;

state<=init;

end

else if(clock_counter==clock_per_bit<<4)

begin

temp_encoded_state<=1'b0;

clock_counter<=clock_counter+1;

end

else

begin

clock_counter<=clock_counter+1;

end

end

endcase

end

assign encoded_state=temp_encoded_state;

assign encoded_data=temp_encoded_data;

endmodule

14.5. encrypt final.v

`timescale 1ns / 1ps

`timescale 1ns / 1ps

module encrypt_final(

clk,

data,

key1,key2,

data_state,

encoded_data,

encoded_state

);

input [127:0] data,key1,key2;

input clk,data_state;

output [127:0]encoded_data;

output encoded_state;
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//change these to change baud rate

parameter clock_speed=100000000;//speed of the FPGA clock

parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;

// number of clock cycles your hardware can afford per bit

//states

reg state=1'b0;//STATES

localparam init=1'b0,encode=1'b1;//states

reg [127:0] temp_encoded_data=0;

reg temp_encoded_state=0;;

reg[24:0] clock_counter=25'b0;//counts how many clock cycles passed

wire [127:0] tempered_data1,tempered_data2;

main_mid DUM1(data,tempered_data1,key1);

main_final DUM2(tempered_data1,tempered_data2,key2);

always@(posedge clk) begin

case (state)

init:

begin

if (clock_counter==clock_per_bit<<4)

begin

temp_encoded_state<=1'b0;

end

else

begin

clock_counter<=clock_counter+1;

end

if (data_state==1)

begin

clock_counter<=0;

state<=encode;

end

end

encode:

begin

if (clock_counter==clock_per_bit*159)

begin

temp_encoded_state<=1'b1;

temp_encoded_data<=tempered_data2;

clock_counter<=0;

state<=init;
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end

else if(clock_counter==clock_per_bit<<4)

begin

temp_encoded_state<=1'b0;

clock_counter<=clock_counter+1;

end

else

begin

clock_counter<=clock_counter+1;

end

end

endcase

end

assign encoded_state=temp_encoded_state;

assign encoded_data=temp_encoded_data;

endmodule

14.6. main first.v

`timescale 1ns / 1ps

module

main_first(

data,

tempered_data,

key_0

);

input [0:127] data;

output [0:127] tempered_data;

input [0:127] key_0;

addRoundKey RFAK (data,key_0,tempered_data);

endmodule

14.7. main mid.v

`timescale 1ns / 1ps

module

main_mid(

data,

tempered_data,

key

);

input [0:127] data;

output [0:127] tempered_data;

input [0:127] key;

wire [0:127] data_after_subs;

wire [0:127] data_after_mixcol;
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wire [0:127] data_after_shift;

substitution RiSB(data,data_after_subs);

shift_rows RiSR(data_after_subs,data_after_shift);

mix_col RiMC(data_after_shift,data_after_mixcol);

addRoundKey RiRK (data_after_mixcol,key,tempered_data);

endmodule

14.8. main final.v

`timescale 1ns / 1ps

module

main_final(

data,

tempered_data,

key_10

);

input [0:127] data;

output [0:127] tempered_data;

input [0:127] key_10;

wire [0:127] data_after_subs;

wire [0:127] data_after_shift;

substitution RFSB(data,data_after_subs);

shift_rows RFSR(data_after_subs,data_after_shift);

addRoundKey RFAk (data_after_shift,key_10,tempered_data);

endmodule

14.9. addRoundKey.v

`timescale 1ns / 1ps

module addRoundKey(

input [127:0] data,

input [127:0] key,

output [127:0] data_with_key

);

assign data_with_key=data^key;

endmodule

14.10. substitution.v

module substitution(

data,

substituted_data
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);

input [0:127] data;

output [0:127] substituted_data;

aes_S_box aes01( data[000:007] , substituted_data[000:007] );

aes_S_box aes02( data[008:015] , substituted_data[008:015] );

aes_S_box aes03( data[016:023] , substituted_data[016:023] );

aes_S_box aes04( data[024:031] , substituted_data[024:031] );

aes_S_box aes05( data[032:039] , substituted_data[032:039] );

aes_S_box aes06( data[040:047] , substituted_data[040:047] );

aes_S_box aes07( data[048:055] , substituted_data[048:055] );

aes_S_box aes08( data[056:063] , substituted_data[056:063] );

aes_S_box aes09( data[064:071] , substituted_data[064:071] );

aes_S_box aes10( data[072:079] , substituted_data[072:079] );

aes_S_box aes11( data[080: 87] , substituted_data[080:087] );

aes_S_box aes12( data[088: 95] , substituted_data[088:095] );

aes_S_box aes13( data[096:103] , substituted_data[096:103] );

aes_S_box aes14( data[104:111] , substituted_data[104:111] );

aes_S_box aes15( data[112:119] , substituted_data[112:119] );

aes_S_box aes16( data[120:127] , substituted_data[120:127] );

endmodule

14.11. aes S box.v

module aes_S_box(

data,

substituted_data

);

input [0:7] data;

output reg [0:7] substituted_data;

reg [0:7] c;

always @(data)

begin

case(data)

8'h00:c =8'h63;8'h01:c =8'h7c;8'h02:c =8'h77;8'h03:c =8'h7b;8'h04:c =8'hf2;

8'h05:c =8'h6b;8'h06:c =8'h6f;8'h07:c =8'hc5;8'h08:c =8'h30;8'h09:c =8'h01;

8'h0a:c =8'h67;8'h0b:c =8'h2b;8'h0c:c =8'hfe;8'h0d:c =8'hd7;8'h0e:c =8'hab;

8'h0f:c =8'h76; //0

8'h10:c =8'hca;8'h11:c =8'h82;8'h12:c =8'hc9;8'h13:c =8'h7d;8'h14:c =8'hfa;

8'h15:c =8'h59;8'h16:c =8'h47;8'h17:c =8'hf0;8'h18:c =8'had;8'h19:c =8'hd4;

8'h1a:c =8'ha2;8'h1b:c =8'haf;8'h1c:c =8'h9c;8'h1d:c =8'ha4;8'h1e:c =8'h72;

8'h1f:c =8'hc0; //1

8'h20:c =8'hb7;8'h21:c =8'hfd;8'h22:c =8'h93;8'h23:c =8'h26;8'h24:c =8'h36;

8'h25:c =8'h3f;8'h26:c =8'hf7;8'h27:c =8'hcc;8'h28:c =8'h34;8'h29:c =8'ha5;

8'h2a:c =8'he5;8'h2b:c =8'hf1;8'h2c:c =8'h71;8'h2d:c =8'hd8;8'h2e:c =8'h31;

8'h2f:c =8'h15; //2

8'h30:c =8'h04;8'h31:c =8'hc7;8'h32:c =8'h23;8'h33:c =8'hc3;8'h34:c =8'h18;

8'h35:c =8'h96;8'h36:c =8'h05;8'h37:c =8'h9a;8'h38:c =8'h07;8'h39:c =8'h12;

8'h3a:c =8'h80;8'h3b:c =8'he2;8'h3c:c =8'heb;8'h3d:c =8'h27;8'h3e:c =8'hb2;
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8'h3f:c =8'h75; //3

8'h40:c =8'h09;8'h41:c =8'h83;8'h42:c =8'h2c;8'h43:c =8'h1a;8'h44:c =8'h1b;

8'h45:c =8'h6e;8'h46:c =8'h5a;8'h47:c =8'ha0;8'h48:c =8'h52;8'h49:c =8'h3b;

8'h4a:c =8'hd6;8'h4b:c =8'hb3;8'h4c:c =8'h29;8'h4d:c =8'he3;8'h4e:c =8'h2f;

8'h4f:c =8'h84; //4

8'h50:c =8'h53;8'h51:c =8'hd1;8'h52:c =8'h00;8'h53:c =8'hed;8'h54:c =8'h20;

8'h55:c =8'hfc;8'h56:c =8'hb1;8'h57:c =8'h5b;8'h58:c =8'h6a;8'h59:c =8'hcb;

8'h5a:c =8'hbe;8'h5b:c =8'h39;8'h5c:c =8'h4a;8'h5d:c =8'h4c;8'h5e:c =8'h58;

8'h5f:c =8'hcf; //5

8'h60:c =8'hd0;8'h61:c =8'hef;8'h62:c =8'haa;8'h63:c =8'hfb;8'h64:c =8'h43;

8'h65:c =8'h4d;8'h66:c =8'h33;8'h67:c =8'h85;8'h68:c =8'h45;8'h69:c =8'hf9;

8'h6a:c =8'h02;8'h6b:c =8'h7f;8'h6c:c =8'h50;8'h6d:c =8'h3c;8'h6e:c =8'h9f;

8'h6f:c =8'ha8; //6

8'h70:c =8'h51;8'h71:c =8'ha3;8'h72:c =8'h40;8'h73:c =8'h8f;8'h74:c =8'h92;

8'h75:c =8'h9d;8'h76:c =8'h38;8'h77:c =8'hf5;8'h78:c =8'hbc;8'h79:c =8'hb6;

8'h7a:c =8'hda;8'h7b:c =8'h21;8'h7c:c =8'h10;8'h7d:c =8'hff;8'h7e:c =8'hf3;

8'h7f:c =8'hd2; //7

8'h80:c =8'hcd;8'h81:c =8'h0c;8'h82:c =8'h13;8'h83:c =8'hec;8'h84:c =8'h5f;

8'h85:c =8'h97;8'h86:c =8'h44;8'h87:c =8'h17;8'h88:c =8'hc4;8'h89:c =8'ha7;

8'h8a:c =8'h7e;8'h8b:c =8'h3d;8'h8c:c =8'h64;8'h8d:c =8'h5d;8'h8e:c =8'h19;

8'h8f:c =8'h73; //8

8'h90:c =8'h60;8'h91:c =8'h81;8'h92:c =8'h4f;8'h93:c =8'hdc;8'h94:c =8'h22;

8'h95:c =8'h2a;8'h96:c =8'h90;8'h97:c =8'h88;8'h98:c =8'h46;8'h99:c =8'hee;

8'h9a:c =8'hb8;8'h9b:c =8'h14;8'h9c:c =8'hde;8'h9d:c =8'h5e;8'h9e:c =8'h0b;

8'h9f:c =8'hdb; //9

8'ha0:c =8'he0;8'ha1:c =8'h32;8'ha2:c =8'h3a;8'ha3:c =8'h0a;8'ha4:c =8'h49;

8'ha5:c =8'h06;8'ha6:c =8'h24;8'ha7:c =8'h5c;8'ha8:c =8'hc2;8'ha9:c =8'hd3;

8'haa:c =8'hac;8'hab:c =8'h62;8'hac:c =8'h91;8'had:c =8'h95;8'hae:c =8'he4;

8'haf:c =8'h79; //a

8'hb0:c =8'he7;8'hb1:c =8'hc8;8'hb2:c =8'h37;8'hb3:c =8'h6d;8'hb4:c =8'h8d;

8'hb5:c =8'hd5;8'hb6:c =8'h4e;8'hb7:c =8'ha9;8'hb8:c =8'h6c;8'hb9:c =8'h56;

8'hba:c =8'hf4;8'hbb:c =8'hea;8'hbc:c =8'h65;8'hbd:c =8'h7a;8'hbe:c =8'hae;

8'hbf:c =8'h08; //b

8'hc0:c =8'hba;8'hc1:c =8'h78;8'hc2:c =8'h25;8'hc3:c =8'h2e;8'hc4:c =8'h1c;

8'hc5:c =8'ha6;8'hc6:c =8'hb4;8'hc7:c =8'hc6;8'hc8:c =8'he8;8'hc9:c =8'hdd;

8'hca:c =8'h74;8'hcb:c =8'h1f;8'hcc:c =8'h4b;8'hcd:c =8'hbd;8'hce:c =8'h8b;

8'hcf:c =8'h8a; //c

8'hd0:c =8'h70;8'hd1:c =8'h3e;8'hd2:c =8'hb5;8'hd3:c =8'h66;8'hd4:c =8'h48;

8'hd5:c =8'h03;8'hd6:c =8'hf6;8'hd7:c =8'h0e;8'hd8:c =8'h61;8'hd9:c =8'h35;

8'hda:c =8'h57;8'hdb:c =8'hb9;8'hdc:c =8'h86;8'hdd:c =8'hc1;8'hde:c =8'h1d;

8'hdf:c =8'h9e; //d

8'he0:c =8'he1;8'he1:c =8'hf8;8'he2:c =8'h98;8'he3:c =8'h11;8'he4:c =8'h69;

8'he5:c =8'hd9;8'he6:c =8'h8e;8'he7:c =8'h94;8'he8:c =8'h9b;8'he9:c =8'h1e;
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8'hea:c =8'h87;8'heb:c =8'he9;8'hec:c =8'hce;8'hed:c =8'h55;8'hee:c =8'h28;

8'hef:c =8'hdf; //e

8'hf0:c =8'h8c;8'hf1:c =8'ha1;8'hf2:c =8'h89;8'hf3:c =8'h0d;8'hf4:c =8'hbf;

8'hf5:c =8'he6;8'hf6:c =8'h42;8'hf7:c =8'h68;8'hf8:c =8'h41;8'hf9:c =8'h99;

8'hfa:c =8'h2d;8'hfb:c =8'h0f;8'hfc:c =8'hb0;8'hfd:c =8'h54;8'hfe:c =8'hbb;

8'hff:c =8'h16; //f

endcase

end

assign substituted_data=c;

endmodule

14.12. shift rows.v

`timescale 1ns / 1ps

module shift_rows(

sub_data,

data_in

);

input [0:127] sub_data;

output [0:127] data_in;

assign data_in[ 0 : 7 ] = sub_data[ 0 : 7 ];

assign data_in[ 8 : 15 ] = sub_data[ 104 : 111 ];

assign data_in[ 16 : 23 ] = sub_data[ 80 : 87 ];

assign data_in[ 24 : 31 ] = sub_data[ 53 : 63 ];

assign data_in[ 32 : 39 ] = sub_data[ 32 : 39 ];

assign data_in[ 40 : 47 ] = sub_data[ 8 : 15 ];

assign data_in[ 48 : 55 ] = sub_data[ 112 : 119 ];

assign data_in[ 56 : 63 ] = sub_data[ 88 : 95 ];

assign data_in[ 64 : 71 ] = sub_data[ 64 : 71 ];

assign data_in[ 72 : 79 ] = sub_data[ 40 : 47 ];

assign data_in[ 80 : 87 ] = sub_data[ 16 : 23 ];

assign data_in[ 88 : 95 ] = sub_data[ 120 : 127 ];

assign data_in[ 96 : 103 ] = sub_data[ 96 : 103 ];

assign data_in[ 104 : 111 ] = sub_data[ 72 : 79 ];

assign data_in[ 112 : 119 ] = sub_data[ 48 : 55 ];

assign data_in[ 120 : 127 ] = sub_data[ 24 : 31 ];

endmodule

14.13. mix col.v

`timescale 1ns / 1ps
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module mix_col(

data_in,

mix_data

);

input [0:127] data_in;

output [0:127] mix_data;

GF_2_8_multiplier COL1(data_in[0:7],data_in[8:15],data_in[16:23],data_in[24:31],

mix_data[0:7],mix_data[8:15],mix_data[16:23],mix_data[24:31]);

GF_2_8_multiplier COL2(data_in[32:39],data_in[40:47],data_in[48:55],data_in[56:63],

mix_data[32:39],mix_data[40:47],mix_data[48:55],mix_data[56:63]);

GF_2_8_multiplier COL3(data_in[64:71],data_in[72:79],data_in[80:87],data_in[88:95],

mix_data[64:71],mix_data[72:79],mix_data[80:87],mix_data[88:95]);

GF_2_8_multiplier COL4(data_in[96:103],data_in[104:111],data_in[112:119],

data_in[120:127],mix_data[96:103],mix_data[104:111],

mix_data[112:119],mix_data[120:127]);

endmodule

14.14. GF 2 8multiplier.v

`timescale 1ns / 1ps

module GF_2_8_multiplier(

data1,

data2,

data3,

data4,

multiplied_data1,

multiplied_data2,

multiplied_data3,

multiplied_data4

);

input [7:0] data1,data2,data3,data4;

output [7:0] multiplied_data1, multiplied_data2, multiplied_data3, multiplied_data4;

/*Multiplication Matrix for Mix Col

|02 03 01 01| |data1|

|01 02 03 01| |data2|

output= |01 01 02 03| * |data3|

|03 01 01 02| |data4|

*/

assign multiplied_data1=

multiply_02(data1)^multiply_03(data2)^multiply_01(data3)^multiply_01(data4);

assign multiplied_data2=

multiply_01(data1)^multiply_02(data2)^multiply_03(data3)^multiply_01(data4);

assign multiplied_data3=

multiply_01(data1)^multiply_01(data2)^multiply_02(data3)^multiply_03(data4);
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assign multiplied_data4=

multiply_03(data1)^multiply_01(data2)^multiply_01(data3)^multiply_02(data4);

function [7:0] multiply_01(input [7:0]a);

begin

multiply_01=a;

end

endfunction

function [7:0] multiply_02(input [7:0]a);

begin

if (a[7]==0) begin

multiply_02=a<<1;

end else begin

multiply_02=(a<<1)^8'b00011011;

end

end

endfunction

function [7:0] multiply_03(input [7:0]a);

reg [7:0]temp;

begin

temp=multiply_02(a);

multiply_03=temp^a;

end

endfunction

endmodule

15. Verilog : Decryption(CODE)

15.1. decryption main.v

`timescale 1ns / 1ps

module decryption_main(

clk,

data,

rx_state,

key,

decrypted_data,

decrypted_data_state

);

input clk;

input rx_state;

input [0:127] key;

input [0:127] data;

output [0:127] decrypted_data;

output decrypted_data_state;

wire [0:127] key_0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10;
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key keygen(key,key_0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10);

inverse_main_decrypt decode(clk,data,rx_state,decrypted_data,decrypted_data_state,

key_0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10);

endmodule

15.2. inverse main decrypt.v

`timescale 1ns / 1ps

module inverse_main_decrypt(

clk,

data,

rx_state,

decrypted_data,

decrypted_data_state,

key_0,key_1,key_2,key_3,key_4,

key_5,key_6,key_7,key_8,key_9,

key_10

);

input clk,rx_state;

input [0:127] data;

output [0:127] decrypted_data;

output decrypted_data_state;

input [0:127] key_0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10;

wire [0:127] key[0:10];

wire [0:127] encoded_data_1,encoded_data_2,encoded_data_3,encoded_data_4;

wire encoded_state_1, encoded_state_2, encoded_state_3, encoded_state_4;

decrypt_first first(clk,data,key_10,key_9,

rx_state,encoded_data_1,encoded_state_1);

decrypt_mid mid1(clk,encoded_data_1,key_8,key_7,

encoded_state_1,encoded_data_2,encoded_state_2);

decrypt_mid mid2(clk,encoded_data_2,key_6,key_5,

encoded_state_2,encoded_data_3,encoded_state_3);

decrypt_mid mid3(clk,encoded_data_3,key_4,key_3,

encoded_state_3,encoded_data_4,encoded_state_4);

decrypt_final last(clk,encoded_data_4,key_2,key_1,key_0,

encoded_state_4,decrypted_data,decrypted_data_state);

endmodule
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15.3. decrypt first.v

`timescale 1ns / 1ps

`timescale 1ns / 1ps

module decrypt_first(

clk,

data,

key1,key2,

data_state,

encoded_data,

encoded_state

);

input [127:0] data,key1,key2;

input clk,data_state;

output [127:0]encoded_data;

output encoded_state;

//change these to change baud rate

parameter clock_speed=100000000;//speed of the FPGA clock

parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;

// number of clock cycles your hardware can afford per bit

//states

reg state=1'b0;//STATES

localparam init=1'b0,encode=1'b1;//states

reg [127:0] temp_encoded_data=0;

reg temp_encoded_state=0;;

reg[24:0] clock_counter=25'b0;//counts how many clock cycles passed

wire [127:0] tempered_data1,tempered_data2;

inverse_main_first DUM1(data,tempered_data1,key1);

inverse_main_mid DUM2(tempered_data1,tempered_data2,key2);

always@(posedge clk) begin

case (state)

init:

begin

if (clock_counter==clock_per_bit<<4)

begin

temp_encoded_state<=1'b0;

end

else

begin
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clock_counter<=clock_counter+1;

end

if (data_state==1)

begin

clock_counter<=0;

state<=encode;

end

end

encode:

begin

if (clock_counter==clock_per_bit*159)

begin

temp_encoded_state<=1'b1;

temp_encoded_data<=tempered_data2;

clock_counter<=0;

state<=init;

end

else if(clock_counter==clock_per_bit<<4)

begin

temp_encoded_state<=1'b0;

clock_counter<=clock_counter+1;

end

else

begin

clock_counter<=clock_counter+1;

end

end

endcase

end

assign encoded_state=temp_encoded_state;

assign encoded_data=temp_encoded_data;

endmodule

15.4. decrypt mid.v

`timescale 1ns / 1ps

`timescale 1ns / 1ps

module decrypt_mid(

clk,

data,

key1,key2,

data_state,

encoded_data,

encoded_state

);

input [127:0] data,key1,key2;

input clk,data_state;

output [127:0]encoded_data;

output encoded_state;
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//change these to change baud rate

parameter clock_speed=100000000;//speed of the FPGA clock

parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;

// number of clock cycles your hardware can afford per bit

//states

reg state=1'b0;//STATES

localparam init=1'b0,encode=1'b1;//states

reg [127:0] temp_encoded_data=0;

reg temp_encoded_state=0;;

reg[24:0] clock_counter=25'b0;//counts how many clock cycles passed

wire [127:0] tempered_data1,tempered_data2;

inverse_main_mid DUM1(data,tempered_data1,key1);

inverse_main_mid DUM2(tempered_data1,tempered_data2,key2);

always@(posedge clk) begin

case (state)

init:

begin

if (clock_counter==clock_per_bit<<4)

begin

temp_encoded_state<=1'b0;

end

else

begin

clock_counter<=clock_counter+1;

end

if (data_state==1)

begin

clock_counter<=0;

state<=encode;

end

end

encode:

begin

if (clock_counter==clock_per_bit*159)

begin

temp_encoded_state<=1'b1;

temp_encoded_data<=tempered_data2;

clock_counter<=0;

state<=init;
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end

else if(clock_counter==clock_per_bit<<4)

begin

temp_encoded_state<=1'b0;

clock_counter<=clock_counter+1;

end

else

begin

clock_counter<=clock_counter+1;

end

end

endcase

end

assign encoded_state=temp_encoded_state;

assign encoded_data=temp_encoded_data;

endmodule

15.5. decrypt final.v

`timescale 1ns / 1ps

`timescale 1ns / 1ps

module decrypt_final(

clk,

data,

key1,key2,key3,

data_state,

encoded_data,

encoded_state

);

input [127:0] data,key1,key2,key3;

input clk,data_state;

output [127:0]encoded_data;

output encoded_state;

//change these to change baud rate

parameter clock_speed=100000000;//speed of the FPGA clock

parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;

// number of clock cycles your hardware can afford per bit

//states

reg state=1'b0;//STATES

localparam init=1'b0,encode=1'b1;//states

reg [127:0] temp_encoded_data=0;

reg temp_encoded_state=0;;

reg[24:0] clock_counter=25'b0;//counts how many clock cycles passed
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wire [127:0] tempered_data1,tempered_data2,tempered_data3;

inverse_main_mid DUM1(data,tempered_data1,key1);

inverse_main_mid DUM2(tempered_data1,tempered_data2,key2);

inverse_main_final DUM3(tempered_data2,tempered_data3,key3);

always@(posedge clk) begin

case (state)

init:

begin

if (clock_counter==clock_per_bit<<4)

begin

temp_encoded_state<=1'b0;

end

else

begin

clock_counter<=clock_counter+1;

end

if (data_state==1)

begin

clock_counter<=0;

state<=encode;

end

end

encode:

begin

if (clock_counter==clock_per_bit*159)

begin

temp_encoded_state<=1'b1;

temp_encoded_data<=tempered_data3;

clock_counter<=0;

state<=init;

end

else if(clock_counter==clock_per_bit<<4)

begin

temp_encoded_state<=1'b0;

clock_counter<=clock_counter+1;

end

else

begin

clock_counter<=clock_counter+1;

end

end

endcase

end

assign encoded_state=temp_encoded_state;

assign encoded_data=temp_encoded_data;

endmodule
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15.6. inverse main first.v

`timescale 1ns / 1ps

module

inverse_main_first(

data,

tempered_data,

key_10

);

input [0:127] data;

output [0:127] tempered_data;

input [0:127] key_10;

wire [0:127] data_with_key;

wire [0:127] data_after_shift;

addRoundKey RFAK (data,key_10,data_with_key);

inv_shift_rows RFSR (data_with_key,data_after_shift);

inv_substitution RFSB (data_after_shift,tempered_data);

endmodule

15.7. inverse main mid.v

`timescale 1ns / 1ps

module

inverse_main_mid(

data,

tempered_data,

key

);

input [0:127] data;

output [0:127] tempered_data;

input [0:127] key;

wire [0:127] data_with_key;

wire [0:127] data_after_mixcol;

wire [0:127] data_after_shift;

addRoundKey RiAk(data,key,data_with_key);

inverse_mixcol RiMC(data_with_key,data_after_mixcol);

inv_shift_rows RiSR(data_after_mixcol,data_after_shift);

inv_substitution RiSB(data_after_shift,tempered_data);

endmodule
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15.8. inverse main final.v

`timescale 1ns / 1ps

module

inverse_main_final(

data,

tempered_data,

key_0

);

input [0:127] data;

output [0:127] tempered_data;

input [0:127] key_0;

addRoundKey RFAK (data,key_0,tempered_data);

endmodule

15.9. addRoundKey.v

`timescale 1ns / 1ps

module addRoundKey(

input [127:0] data,

input [127:0] key,

output [127:0] data_with_key

);

assign data_with_key=data^key;

endmodule

15.10. Inv substitution.v

module inv_substitution(

mixcol_data,

inv_substituted_data

);

input [0:127] mixcol_data;

output [0:127] inv_substituted_data;

aes_invS_box invaes01( mixcol_data[000:007] , inv_substituted_data[000:007] );

aes_invS_box invaes02( mixcol_data[008:015] , inv_substituted_data[008:015] );

aes_invS_box invaes03( mixcol_data[016:023] , inv_substituted_data[016:023] );

aes_invS_box invaes04( mixcol_data[024:031] , inv_substituted_data[024:031] );

aes_invS_box invaes05( mixcol_data[032:039] , inv_substituted_data[032:039] );

aes_invS_box invaes06( mixcol_data[040:047] , inv_substituted_data[040:047] );

aes_invS_box invaes07( mixcol_data[048:055] , inv_substituted_data[048:055] );

aes_invS_box invaes08( mixcol_data[056:063] , inv_substituted_data[056:063] );

aes_invS_box invaes09( mixcol_data[064:071] , inv_substituted_data[064:071] );

aes_invS_box invaes10( mixcol_data[072:079] , inv_substituted_data[072:079] );

aes_invS_box invaes11( mixcol_data[080: 87] , inv_substituted_data[080:087] );

aes_invS_box invaes12( mixcol_data[088: 95] , inv_substituted_data[088:095] );

aes_invS_box invaes13( mixcol_data[096:103] , inv_substituted_data[096:103] );
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aes_invS_box invaes14( mixcol_data[104:111] , inv_substituted_data[104:111] );

aes_invS_box invaes15( mixcol_data[112:119] , inv_substituted_data[112:119] );

aes_invS_box invaes16( mixcol_data[120:127] , inv_substituted_data[120:127] );

endmodule

15.11. aes invS box.v

module aes_invS_box(

mixcol_data,

inv_substituted_data

);

input [0:7] mixcol_data;

output reg [0:7] inv_substituted_data;

reg [0:7] c;

always @(mixcol_data)

begin

case(mixcol_data)

8'h63:c =8'h00;8'h7c:c =8'h01;8'h77:c =8'h02;8'h7b:c =8'h03;

8'hf2:c =8'h04;8'h6b:c =8'h05;8'h6f:c =8'h06;8'hc5:c =8'h07;

8'h30:c =8'h08;8'h01:c =8'h09;8'h67:c =8'h0a;8'h2b:c =8'h0b;

8'hfe:c =8'h0c;8'hd7:c =8'h0d;8'hab:c =8'h0e;8'h76:c =8'h0f; //0

8'hca:c =8'h10;8'h82:c =8'h11;8'hc9:c =8'h12;8'h7d:c =8'h13;

8'hfa:c =8'h14;8'h59:c =8'h15;8'h47:c =8'h16;8'hf0:c =8'h17;

8'had:c =8'h18;8'hd4:c =8'h19;8'ha2:c =8'h1a;8'haf:c =8'h1b;

8'h9c:c =8'h1c;8'ha4:c =8'h1d;8'h72:c =8'h1e;8'hc0:c =8'h1f; //1

8'hb7:c =8'h20;8'hfd:c =8'h21;8'h93:c =8'h22;8'h26:c =8'h23;

8'h36:c =8'h24;8'h3f:c =8'h25;8'hf7:c =8'h26;8'hcc:c =8'h27;

8'h34:c =8'h28;8'ha5:c =8'h29;8'he5:c =8'h2a;8'hf1:c =8'h2b;

8'h71:c =8'h2c;8'hd8:c =8'h2d;8'h31:c =8'h2e;8'h15:c =8'h2f; //2

8'h04:c =8'h30;8'hc7:c =8'h31;8'h23:c =8'h32;8'hc3:c =8'h33;

8'h18:c =8'h34;8'h96:c =8'h35;8'h05:c =8'h36;8'h9a:c =8'h37;

8'h07:c =8'h38;8'h12:c =8'h39;8'h80:c =8'h3a;8'he2:c =8'h3b;

8'heb:c =8'h3c;8'h27:c =8'h3d;8'hb2:c =8'h3e;8'h75:c =8'h3f; //3

8'h09:c =8'h40;8'h83:c =8'h41;8'h2c:c =8'h42;8'h1a:c =8'h43;

8'h1b:c =8'h44;8'h6e:c =8'h45;8'h5a:c =8'h46;8'ha0:c =8'h47;

8'h52:c =8'h48;8'h3b:c =8'h49;8'hd6:c =8'h4a;8'hb3:c =8'h4b;

8'h29:c =8'h4c;8'he3:c =8'h4d;8'h2f:c =8'h4e;8'h84:c =8'h4f; //4

8'h53:c =8'h50;8'hd1:c =8'h51;8'h00:c =8'h52;8'hed:c =8'h53;

8'h20:c =8'h54;8'hfc:c =8'h55;8'hb1:c =8'h56;8'h5b:c =8'h57;

8'h6a:c =8'h58;8'hcb:c =8'h59;8'hbe:c =8'h5a;8'h39:c =8'h5b;

8'h4a:c =8'h5c;8'h4c:c =8'h5d;8'h58:c =8'h5e;8'hcf:c =8'h5f; //5

8'hd0:c =8'h60;8'hef:c =8'h61;8'haa:c =8'h62;8'hfb:c =8'h63;

8'h43:c =8'h64;8'h4d:c =8'h65;8'h33:c =8'h66;8'h85:c =8'h67;

8'h45:c =8'h68;8'hf9:c =8'h69;8'h02:c =8'h6a;8'h7f:c =8'h6b;

8'h50:c =8'h6c;8'h3c:c =8'h6d;8'h9f:c =8'h6e;8'ha8:c =8'h6f; //6
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8'h51:c =8'h70;8'ha3:c =8'h71;8'h40:c =8'h72;8'h8f:c =8'h73;

8'h92:c =8'h74;8'h9d:c =8'h75;8'h38:c =8'h76;8'hf5:c =8'h77;

8'hbc:c =8'h78;8'hb6:c =8'h79;8'hda:c =8'h7a;8'h21:c =8'h7b;

8'h10:c =8'h7c;8'hff:c =8'h7d;8'hf3:c =8'h7e;8'hd2:c =8'h7f; //7

8'hcd:c =8'h80;8'h0c:c =8'h81;8'h13:c =8'h82;8'hec:c =8'h83;

8'h5f:c =8'h84;8'h97:c =8'h85;8'h44:c =8'h86;8'h17:c =8'h87;

8'hc4:c =8'h88;8'ha7:c =8'h89;8'h7e:c =8'h8a;8'h3d:c =8'h8b;

8'h64:c =8'h8c;8'h5d:c =8'h8d;8'h19:c =8'h8e;8'h73:c =8'h8f; //8

8'h60:c =8'h90;8'h81:c =8'h91;8'h4f:c =8'h92;8'hdc:c =8'h93;

8'h22:c =8'h94;8'h2a:c =8'h95;8'h90:c =8'h96;8'h88:c =8'h97;

8'h46:c =8'h98;8'hee:c =8'h99;8'hb8:c =8'h9a;8'h14:c =8'h9b;

8'hde:c =8'h9c;8'h5e:c =8'h9d;8'h0b:c =8'h9e;8'hdb:c =8'h9f; //9

8'he0:c =8'ha0;8'h32:c =8'ha1;8'h3a:c =8'ha2;8'h0a:c =8'ha3;

8'h49:c =8'ha4;8'h06:c =8'ha5;8'h24:c =8'ha6;8'h5c:c =8'ha7;

8'hc2:c =8'ha8;8'hd3:c =8'ha9;8'hac:c =8'haa;8'h62:c =8'hab;

8'h91:c =8'hac;8'h95:c =8'had;8'he4:c =8'hae;8'h79:c =8'haf; //a

8'he7:c =8'hb0;8'hc8:c =8'hb1;8'h37:c =8'hb2;8'h6d:c =8'hb3;

8'h8d:c =8'hb4;8'hd5:c =8'hb5;8'h4e:c =8'hb6;8'ha9:c =8'hb7;

8'h6c:c =8'hb8;8'h56:c =8'hb9;8'hf4:c =8'hba;8'hea:c =8'hbb;

8'h65:c =8'hbc;8'h7a:c =8'hbd;8'hae:c =8'hbe;8'h08:c =8'hbf; //b

8'hba:c =8'hc0;8'h78:c =8'hc1;8'h25:c =8'hc2;8'h2e:c =8'hc3;

8'h1c:c =8'hc4;8'ha6:c =8'hc5;8'hb4:c =8'hc6;8'hc6:c =8'hc7;

8'he8:c =8'hc8;8'hdd:c =8'hc9;8'h74:c =8'hca;8'h1f:c =8'hcb;

8'h4b:c =8'hcc;8'hbd:c =8'hcd;8'h8b:c =8'hce;8'h8a:c =8'hcf; //c

8'h70:c =8'hd0;8'h3e:c =8'hd1;8'hb5:c =8'hd2;8'h66:c =8'hd3;

8'h48:c =8'hd4;8'h03:c =8'hd5;8'hf6:c =8'hd6;8'h0e:c =8'hd7;

8'h61:c =8'hd8;8'h35:c =8'hd9;8'h57:c =8'hda;8'hb9:c =8'hdb;

8'h86:c =8'hdc;8'hc1:c =8'hdd;8'h1d:c =8'hde;8'h9e:c =8'hdf; //d

8'he1:c =8'he0;8'hf8:c =8'he1;8'h98:c =8'he2;8'h11:c =8'he3;

8'h69:c =8'he4;8'hd9:c =8'he5;8'h8e:c =8'he6;8'h94:c =8'he7;

8'h9b:c =8'he8;8'h1e:c =8'he9;8'h87:c =8'hea;8'he9:c =8'heb;

8'hce:c =8'hec;8'h55:c =8'hed;8'h28:c =8'hee;8'hdf:c =8'hef; //e

8'h8c:c =8'hf0;8'ha1:c =8'hf1;8'h89:c =8'hf2;8'h0d:c =8'hf3;

8'hbf:c =8'hf4;8'he6:c =8'hf5;8'h42:c =8'hf6;8'h68:c =8'hf7;

8'h41:c =8'hf8;8'h99:c =8'hf9;8'h2d:c =8'hfa;8'h0f:c =8'hfb;

8'hb0:c =8'hfc;8'h54:c =8'hfd;8'hbb:c =8'hfe;8'h16:c =8'hff; //f

endcase

end

assign inv_substituted_data=c;

endmodule

15.12. inv shift rows.v

module inv_shift_rows(

inv_sub_data,
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data_in

);

input [0:127] inv_sub_data;

output [0:127] data_in;

assign data_in[ 0 : 7 ] = inv_sub_data[ 0 : 7 ];

assign data_in[ 8 : 15 ] = inv_sub_data[ 40 : 47 ];

assign data_in[ 16 : 23 ] = inv_sub_data[ 80 : 87 ];

assign data_in[ 24 : 31 ] = inv_sub_data[ 120 : 127 ];

assign data_in[ 32 : 39 ] = inv_sub_data[ 32 : 39 ];

assign data_in[ 40 : 47 ] = inv_sub_data[ 72 : 79 ];

assign data_in[ 48 : 55 ] = inv_sub_data[ 112 : 119 ];

assign data_in[ 56 : 63 ] = inv_sub_data[ 24 : 31 ];

assign data_in[ 64 : 71 ] = inv_sub_data[ 64 : 71 ];

assign data_in[ 72 : 79 ] = inv_sub_data[ 104 : 111 ];

assign data_in[ 80 : 87 ] = inv_sub_data[ 16 : 23 ];

assign data_in[ 88 : 95 ] = inv_sub_data[ 56 : 63 ];

assign data_in[ 96 : 103 ] = inv_sub_data[ 96 : 103 ];

assign data_in[ 104 : 111 ] = inv_sub_data[ 8 : 15 ];

assign data_in[ 112 : 119 ] = inv_sub_data[ 48 : 55 ];

assign data_in[ 120 : 127 ] = inv_sub_data[ 88 : 95 ];

endmodule

15.13. inverse mix col.v

`timescale 1ns / 1ps

module inverse_mixcol(

data_in,

inverse_mixdata

);

input [0:127] data_in;

output [0:127] inverse_mixdata;

inv_GF_2_8_multiplier COL1(data_in[0:7],data_in[8:15],data_in[16:23],

data_in[24:31],

inverse_mixdata[0:7],inverse_mixdata[8:15],inverse_mixdata[16:23],

inverse_mixdata[24:31]);

inv_GF_2_8_multiplier COL2(data_in[32:39],data_in[40:47],data_in[48:55],

data_in[56:63],

inverse_mixdata[32:39],inverse_mixdata[40:47],inverse_mixdata[48:55],

inverse_mixdata[56:63]);

inv_GF_2_8_multiplier COL3(data_in[64:71],data_in[72:79],data_in[80:87],

data_in[88:95],

inverse_mixdata[64:71],inverse_mixdata[72:79],inverse_mixdata[80:87],

inverse_mixdata[88:95]);
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inv_GF_2_8_multiplier COL4(data_in[96:103],data_in[104:111],data_in[112:119],

data_in[120:127],

inverse_mixdata[96:103],inverse_mixdata[104:111],inverse_mixdata[112:119],

inverse_mixdata[120:127]);

endmodule

15.14. inv GF 2 8 multiplier.v

`timescale 1ns / 1ps

module inv_GF_2_8_multiplier(

data1,

data2,

data3,

data4,

multiplied_data1,

multiplied_data2,

multiplied_data3,

multiplied_data4,

);

input [7:0] data1,data2,data3,data4;

output [7:0] multiplied_data1, multiplied_data2, multiplied_data3, multiplied_data4;

/*Multiplication Matrix for Mix Col

|0E 0B 0D 09| |data1|

|09 0E 0B 0D| |data2|

output= |0D 09 0E 0B| * |data3|

|0B 0D 09 0E| |data4|

*/

assign multiplied_data1=

multiply_0E(data1)^multiply_0B(data2)^multiply_0D(data3)^multiply_09(data4);

assign multiplied_data2=

multiply_09(data1)^multiply_0E(data2)^multiply_0B(data3)^multiply_0D(data4);

assign multiplied_data3=

multiply_0D(data1)^multiply_09(data2)^multiply_0E(data3)^multiply_0B(data4);

assign multiplied_data4=

multiply_0B(data1)^multiply_0D(data2)^multiply_09(data3)^multiply_0E(data4);

function [7:0] multiply_09(input [7:0]a);

begin

multiply_09=(multiply_02(multiply_02(multiply_02(a)))^ a);

end

endfunction

function [7:0] multiply_0B(input [7:0]a);

begin

multiply_0B=(multiply_02(multiply_02(multiply_02(a))^a)^a);

end

endfunction

function [7:0] multiply_0D(input [7:0]a);

begin

multiply_0D=(multiply_02(multiply_02((multiply_02(a)^a)))^a);

end
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endfunction

function [7:0] multiply_0E(input [7:0]a);

begin

multiply_0E=multiply_02(multiply_02(multiply_02(a)^a)^a);

end

endfunction

function [7:0] multiply_01(input [7:0]a);

begin

multiply_01=a;

end

endfunction

function [7:0] multiply_02(input [7:0]a);

begin

if (a[7]==0) begin

multiply_02=a<<1;

end else begin

multiply_02=(a<<1)^8'b00011011;

end

end

endfunction

function [7:0] multiply_03(input [7:0]a);

reg [7:0]temp;

begin

temp=multiply_02(a);

multiply_03=temp^a;

end

endfunction

endmodule

16. Verilog : Key Expansion(CODE)

16.1. key.v

`timescale 1ns / 1ps

module key( key_in,key_0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10);

input [127:0] key_in;

output [127:0] key_0;

output [127:0] key_1;

output [127:0] key_2;

output [127:0] key_3;

output [127:0] key_4;

output [127:0] key_5;

output [127:0] key_6;

output [127:0] key_7;

output [127:0] key_8;
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output [127:0] key_9;

output [127:0] key_10;

wire [127:0] key_bus [0:10];

wire [39:0] select_i;

assign key_bus[0] = key_in;

assign select_i = 40'h9876543210;

genvar i;

generate

for( i=0; i<10; i= i+1) begin

aes_key_expand_128 k0(

.select_i(select_i[4*(i+1)-1 : 4*i]),.key(key_bus[i]), .key_out(key_bus[i+1]));

end

endgenerate

assign key_0 = key_bus[0];

assign key_1 = key_bus[1];

assign key_2 = key_bus[2];

assign key_3 = key_bus[3];

assign key_4 = key_bus[4];

assign key_5 = key_bus[5];

assign key_6 = key_bus[6];

assign key_7 = key_bus[7];

assign key_8 = key_bus[8];

assign key_9 = key_bus[9];

assign key_10 = key_bus[10];

endmodule

16.2. key expand.v

`timescale 1ns / 1ps

module aes_key_expand_128( select_i, key, key_out);

input [3:0] select_i;

input [127:0] key;

output [127:0] key_out;

wire [31:0] w[3:0];

wire [31:0] tmp_w;

wire [31:0] subword;

wire [31:0] rcon;

wire [31:0] a,b,c,d;
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assign w[0] = key[127:096];

assign w[1] = key[095:064];

assign w[2] = key[063:032];

assign w[3] = key[031:000] ;

assign a = w[0]^subword^rcon;

assign b = w[0]^w[1]^subword^rcon;

assign c = w[0]^w[2]^w[1]^subword^rcon;

assign d = w[0]^w[3]^w[2]^w[1]^subword^rcon;

assign tmp_w = w[3];

aes_sbox u0( .a(tmp_w[23:16]), .d(subword[31:24]));

aes_sbox u1( .a(tmp_w[15:08]), .d(subword[23:16]));

aes_sbox u2( .a(tmp_w[07:00]), .d(subword[15:08]));

aes_sbox u3( .a(tmp_w[31:24]), .d(subword[07:00]));

aes_rcon r0( .select_i(select_i), .out(rcon));

assign key_out ={a,b,c,d};

endmodule

16.3. aes sbox.v

`timescale 1ns / 1ps

module aes_sbox(a,d);

input [7:0] a;

output [7:0] d;

reg [7:0] d;

always @(a)

case(a)

8'h00: d=8'h63;8'h01: d=8'h7c;8'h02: d=8'h77;8'h03: d=8'h7b;8'h04: d=8'hf2;

8'h05: d=8'h6b;8'h06: d=8'h6f;8'h07: d=8'hc5;8'h08: d=8'h30;8'h09: d=8'h01;

8'h0a: d=8'h67;8'h0b: d=8'h2b;8'h0c: d=8'hfe;8'h0d: d=8'hd7;8'h0e: d=8'hab;

8'h0f: d=8'h76;8'h10: d=8'hca;8'h11: d=8'h82;8'h12: d=8'hc9;8'h13: d=8'h7d;

8'h14: d=8'hfa;8'h15: d=8'h59;8'h16: d=8'h47;8'h17: d=8'hf0;8'h18: d=8'had;

8'h19: d=8'hd4;8'h1a: d=8'ha2;8'h1b: d=8'haf;8'h1c: d=8'h9c;8'h1d: d=8'ha4;

8'h1e: d=8'h72;8'h1f: d=8'hc0;8'h20: d=8'hb7;8'h21: d=8'hfd;8'h22: d=8'h93;

8'h23: d=8'h26;8'h24: d=8'h36;8'h25: d=8'h3f;8'h26: d=8'hf7;8'h27: d=8'hcc;

8'h28: d=8'h34;8'h29: d=8'ha5;8'h2a: d=8'he5;8'h2b: d=8'hf1;8'h2c: d=8'h71;
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8'h2d: d=8'hd8;8'h2e: d=8'h31;8'h2f: d=8'h15;8'h30: d=8'h04;8'h31: d=8'hc7;

8'h32: d=8'h23;8'h33: d=8'hc3;8'h34: d=8'h18;8'h35: d=8'h96;8'h36: d=8'h05;

8'h37: d=8'h9a;8'h38: d=8'h07;8'h39: d=8'h12;8'h3a: d=8'h80;8'h3b: d=8'he2;

8'h3c: d=8'heb;8'h3d: d=8'h27;8'h3e: d=8'hb2;8'h3f: d=8'h75;8'h40: d=8'h09;

8'h41: d=8'h83;8'h42: d=8'h2c;8'h43: d=8'h1a;8'h44: d=8'h1b;8'h45: d=8'h6e;

8'h46: d=8'h5a;8'h47: d=8'ha0;8'h48: d=8'h52;8'h49: d=8'h3b;8'h4a: d=8'hd6;

8'h4b: d=8'hb3;8'h4c: d=8'h29;8'h4d: d=8'he3;8'h4e: d=8'h2f;8'h4f: d=8'h84;

8'h50: d=8'h53;8'h51: d=8'hd1;8'h52: d=8'h00;8'h53: d=8'hed;8'h54: d=8'h20;

8'h55: d=8'hfc;8'h56: d=8'hb1;8'h57: d=8'h5b;8'h58: d=8'h6a;8'h59: d=8'hcb;

8'h5a: d=8'hbe;8'h5b: d=8'h39;8'h5c: d=8'h4a;8'h5d: d=8'h4c;8'h5e: d=8'h58;

8'h5f: d=8'hcf;8'h60: d=8'hd0;8'h61: d=8'hef;8'h62: d=8'haa;8'h63: d=8'hfb;

8'h64: d=8'h43;8'h65: d=8'h4d;8'h66: d=8'h33;8'h67: d=8'h85;8'h68: d=8'h45;

8'h69: d=8'hf9;8'h6a: d=8'h02;8'h6b: d=8'h7f;8'h6c: d=8'h50;8'h6d: d=8'h3c;

8'h6e: d=8'h9f;8'h6f: d=8'ha8;8'h70: d=8'h51;8'h71: d=8'ha3;8'h72: d=8'h40;

8'h73: d=8'h8f;8'h74: d=8'h92;8'h75: d=8'h9d;8'h76: d=8'h38;8'h77: d=8'hf5;

8'h78: d=8'hbc;8'h79: d=8'hb6;8'h7a: d=8'hda;8'h7b: d=8'h21;8'h7c: d=8'h10;

8'h7d: d=8'hff;8'h7e: d=8'hf3;8'h7f: d=8'hd2;8'h80: d=8'hcd;8'h81: d=8'h0c;

8'h82: d=8'h13;8'h83: d=8'hec;8'h84: d=8'h5f;8'h85: d=8'h97;8'h86: d=8'h44;

8'h87: d=8'h17;8'h88: d=8'hc4;8'h89: d=8'ha7;8'h8a: d=8'h7e;8'h8b: d=8'h3d;

8'h8c: d=8'h64;8'h8d: d=8'h5d;8'h8e: d=8'h19;8'h8f: d=8'h73;8'h90: d=8'h60;

8'h91: d=8'h81;8'h92: d=8'h4f;8'h93: d=8'hdc;8'h94: d=8'h22;8'h95: d=8'h2a;

8'h96: d=8'h90;8'h97: d=8'h88;8'h98: d=8'h46;8'h99: d=8'hee;8'h9a: d=8'hb8;

8'h9b: d=8'h14;8'h9c: d=8'hde;8'h9d: d=8'h5e;8'h9e: d=8'h0b;8'h9f: d=8'hdb;

8'ha0: d=8'he0;8'ha1: d=8'h32;8'ha2: d=8'h3a;8'ha3: d=8'h0a;8'ha4: d=8'h49;

8'ha5: d=8'h06;8'ha6: d=8'h24;8'ha7: d=8'h5c;8'ha8: d=8'hc2;8'ha9: d=8'hd3;

8'haa: d=8'hac;8'hab: d=8'h62;8'hac: d=8'h91;8'had: d=8'h95;8'hae: d=8'he4;

8'haf: d=8'h79;8'hb0: d=8'he7;8'hb1: d=8'hc8;8'hb2: d=8'h37;8'hb3: d=8'h6d;

8'hb4: d=8'h8d;8'hb5: d=8'hd5;8'hb6: d=8'h4e;8'hb7: d=8'ha9;8'hb8: d=8'h6c;

8'hb9: d=8'h56;8'hba: d=8'hf4;8'hbb: d=8'hea;8'hbc: d=8'h65;8'hbd: d=8'h7a;

8'hbe: d=8'hae;8'hbf: d=8'h08;8'hc0: d=8'hba;8'hc1: d=8'h78;8'hc2: d=8'h25;

8'hc3: d=8'h2e;8'hc4: d=8'h1c;8'hc5: d=8'ha6;8'hc6: d=8'hb4;8'hc7: d=8'hc6;

8'hc8: d=8'he8;8'hc9: d=8'hdd;8'hca: d=8'h74;8'hcb: d=8'h1f;8'hcc: d=8'h4b;

8'hcd: d=8'hbd;8'hce: d=8'h8b;8'hcf: d=8'h8a;8'hd0: d=8'h70;8'hd1: d=8'h3e;

8'hd2: d=8'hb5;8'hd3: d=8'h66;8'hd4: d=8'h48;8'hd5: d=8'h03;8'hd6: d=8'hf6;

8'hd7: d=8'h0e;8'hd8: d=8'h61;8'hd9: d=8'h35;8'hda: d=8'h57;8'hdb: d=8'hb9;

8'hdc: d=8'h86;8'hdd: d=8'hc1;8'hde: d=8'h1d;8'hdf: d=8'h9e;8'he0: d=8'he1;

8'he1: d=8'hf8;8'he2: d=8'h98;8'he3: d=8'h11;8'he4: d=8'h69;8'he5: d=8'hd9;

8'he6: d=8'h8e;8'he7: d=8'h94;8'he8: d=8'h9b;8'he9: d=8'h1e;8'hea: d=8'h87;

8'heb: d=8'he9;8'hec: d=8'hce;8'hed: d=8'h55;8'hee: d=8'h28;8'hef: d=8'hdf;

8'hf0: d=8'h8c;8'hf1: d=8'ha1;8'hf2: d=8'h89;8'hf3: d=8'h0d;8'hf4: d=8'hbf;

8'hf5: d=8'he6;8'hf6: d=8'h42;8'hf7: d=8'h68;8'hf8: d=8'h41;8'hf9: d=8'h99;

8'hfa: d=8'h2d;8'hfb: d=8'h0f;8'hfc: d=8'hb0;8'hfd: d=8'h54;8'hfe: d=8'hbb;

8'hff: d=8'h16;

endcase

endmodule
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17. Verilog : UART(CODE)

17.1. rx.v

`timescale 1ns / 1ps

module rx(

clk,//clock of fpga

data_in,// the reciver pin in fpga

data_state,

data_out // the data obtained

);

input clk,data_in;

output [127:0] data_out;

output data_state;

//change these to change the baud rate

parameter clock_speed=100000000;//speed of the FPGA clock

parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;

// number of clock cycles your hardware can afford per bit

//states

reg[1:0] state=2'b0;//STATES

localparam init=2'd0,start=2'd1,readdata=2'd2,stop=2'd3;//states

//registers

reg[24:0] clock_counter=24'b0;//counts how many clock cycles passed

reg[24:0] temp_clock_counter=24'b0;//counts how many clock cycles passed

reg[7:0] output_array=8'b0;//stores the recieved bits

reg[6:0] no_data_recieved=7'b0,temp_no_data_recieved=3'b0;

//counts how many data bits recieved

reg[127:0] temp_temp_data_out=128'b0,temp_data_out=128'b0,data_out128=128'b1;

//holds 128 bit data

reg temp_data_state=0;

reg [18:0] data_state_counter=0;

always@(posedge clk) begin

case (state)

//stays in idle state

init:

begin

if (clock_counter==clock_per_bit<<3)

begin

temp_data_state<=1'b0;

clock_counter<=0;

end
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else

begin

clock_counter<=clock_counter+1;

end

if(data_in==0)//check for the first 0

begin

clock_counter<=0;

state<=start;//goto next state

end

end

//starts when first 0 is recieved

start:

begin

if(clock_counter==(clock_per_bit>>1))

// check if half the clock cycles assignes has passed

begin

if(data_in==0)//if the input is still 0 or not

begin

clock_counter<=0;//reset clock

state<=readdata;//go to next state

end

else

begin

state<=init;//else go to the first state

end

end

else

begin

clock_counter<=clock_counter+1;//count to wait the required clock cycles

end

end

//starts to read data until 8 datas points are obtained

readdata:

begin

if(clock_counter==clock_per_bit)

begin

clock_counter<=0;

output_array<={data_in,output_array[7:1]};// assign the input data

//uart offers mirror image of data,

//the trick above helps us to recreate the original data

no_data_recieved<=temp_no_data_recieved;//counts the total data recieved

if (&no_data_recieved[2:0])//check if data recieved is seven or not

begin

clock_counter<=0;//clears clock

temp_temp_data_out<=temp_data_out;

//calculates once 8 bit data is received

state<=stop;//proceeds to next state

end

end
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else

begin

clock_counter<=clock_counter+1;//counts till required clock time

end

end

//once 8 bit data are obtained rests until the last enter data settles

stop:

begin

if(~(|no_data_recieved[6:0]))//7 times 8 bit data is input

begin

temp_data_state<=1'b1;

end

else

begin

temp_data_state<=1'b0;

end

if(clock_counter==clock_per_bit)//the 10 is used as temporary wait time to proceed to next input

begin

clock_counter<=0;//resets clock

state<=init;//goes to sleep state and awakes if the next input is 0

end

else

begin

clock_counter<=clock_counter+1;//counts clock cycles

end

end

//default

default:

state<=init;

endcase

end

//happens every clock cycles

always@(posedge clk)

begin

temp_no_data_recieved<=no_data_recieved+1;//increments the data collected

if (state==stop)

begin

temp_data_out<={temp_temp_data_out[119:0],output_array};

//at stop state assignes the collected seven bit data

//else continues to carry its previoud value

if(~(|no_data_recieved[6:0]))//7 times 8 bit data is input

begin

data_out128<=temp_data_out;//output data

end

end

if (state==init)
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begin

if(temp_clock_counter==clock_per_bit*160)

begin

data_out128<=128'b1;

temp_clock_counter<=0;

end

else

begin

temp_clock_counter<=temp_clock_counter+1;

end

end

else

begin

temp_clock_counter<=0;

end

end

assign data_state=temp_data_state;

assign data_out=data_out128;

endmodule

17.2. tx.v

`timescale 1ns / 1ps

module tx(

data_state,

clk,

data,

reset,

out

);

input data_state;

input clk;

input reset;

input [127:0] data;

output out;

reg [2:0] state=2'd0;

reg [10:0] data_send;

localparam init=2'd0,setup=2'd1,writedata=2'd2;//states

parameter rest=1;

//change these to change the baud rate

parameter clock_speed=100000000;//speed of the FPGA clock

parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;

// number of clock cycles your hardware can afford per bit
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reg[16:0] clock_counter=13'b0;//counts how many clock cycles passed

reg temp_out=rest;

reg [3:0] bit_counter=0,temp_bit_counter=0;;

reg [3:0] byte_counter;

always@(posedge clk)

begin

case(state)

init:

begin

temp_out<=1'b1;

byte_counter<=0;

if (data_state==1)

begin

state<=setup;

end

end

setup:

begin

if (reset==1)

begin

state<=init;

end

else

begin

case(byte_counter)

0:data_send = {1'b1,1'b1,data[127:120],1'b0};

1:data_send = {1'b1,1'b1,data[119:112],1'b0};

2:data_send = {1'b1,1'b1,data[111:104],1'b0};

3:data_send = {1'b1,1'b1,data[103: 96],1'b0};

4:data_send = {1'b1,1'b1,data[ 95: 88],1'b0};

5:data_send = {1'b1,1'b1,data[ 87: 80],1'b0};

6:data_send = {1'b1,1'b1,data[ 79: 72],1'b0};

7:data_send = {1'b1,1'b1,data[ 71: 64],1'b0};

8:data_send = {1'b1,1'b1,data[ 63: 56],1'b0};

9:data_send = {1'b1,1'b1,data[ 55: 48],1'b0};

10:data_send = {1'b1,1'b1,data[ 47: 40],1'b0};

11:data_send = {1'b1,1'b1,data[ 39: 32],1'b0};

12:data_send = {1'b1,1'b1,data[ 31: 24],1'b0};

13:data_send = {1'b1,1'b1,data[ 23: 16],1'b0};

14:data_send = {1'b1,1'b1,data[ 15: 8],1'b0};

15:data_send = {1'b1,1'b1,data[ 7: 0],1'b0};

endcase

state<=writedata;

clock_counter<=clock_per_bit;

bit_counter<=0;

end

end

writedata:

begin
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if (clock_counter==clock_per_bit)

begin

temp_out<=data_send[bit_counter];

clock_counter<=0;

if (bit_counter==10)

begin

if (byte_counter==15)

begin

state<=init;

end

else

begin

state<=setup;

byte_counter=byte_counter+1;

end

end

else

begin

bit_counter<=bit_counter+1;

end

end

else

begin

clock_counter<=clock_counter+1;

end

end

default:

begin

state<=init;

end

endcase

end

assign out=temp_out;

endmodule

18. Device Compilation Code

18.1. main.v for FPGA with encryption

`timescale 1ns / 1ps

module main(

clk,

data_in,

data_out_tx

);

input clk,data_in;

output data_out_tx;

wire data_state,encoded_data_state;

wire [127:0] data_out_rx;//data_out_rx_test;
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wire [127:0] encrypted_data;

reg [127:0] key=128'h5468617473206d79204b756e67204675;

rx DUT1(clk,data_in,data_state,data_out_rx);

encryption_main DUM(clk,data_out_rx,data_state,key,encrypted_data,encoded_data_state);

tx DUT3( encoded_data_state, clk, encrypted_data,1'b0, data_out_tx);

endmodule

18.2. main.v for FPGA with decryption

`timescale 1ns / 1ps

module main(

clk,

data_in,

data_out_tx

);

input clk,data_in;

output data_out_tx;

wire data_state,encoded_data_state;

wire [127:0] data_out_rx;//data_out_rx_test;

wire [127:0] decrypted_data;

reg [127:0] key=128'h5468617473206d79204b756e67204675;

rx DUT1(clk,data_in,data_state,data_out_rx);

decryption_main DUM(clk,data_out_rx,data_state,key,decrypted_data,encoded_data_state);

tx DUT3( encoded_data_state, clk, decrypted_data,1'b0, data_out_tx);

endmodule

94



References

[1] ”A review on serial communication by UART”. http://ijarcsse.com/Before_August_2017/docs/

papers/Volume_3/1_January2013/V3I1-0220.pdf Date Accessed = ”2021-04-20”.

[2] ”Design of a 9-bit UART module based on Verilog HDL”. 2012 10th IEEE International Conference on
Semiconductor Electronics (ICSE), 2012, pp. 570-573, doi: 10.1109/SMElec.2012.6417210. Date Accessed
= ”2020-11-20”.

[3] ”The Rijndael Block Cipher”. "https://csrc.nist.gov/csrc/media/projects/

cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.

pdf"DateAccessed="2020-20-20".

[4] Ako Abdullah. Advanced encryption standard (aes) algorithm to encrypt and decrypt data. 06 2017.

[5] ”Hakhamaneshi, Bahram and Arad, Behnam”. ”A Hardware Implementation of the Advanced Encryption
Standard (AES) Algorithm using SystemVerilog”, ”01” ”2010”.

95

http://ijarcsse.com/Before_August_2017/docs/papers/Volume_3/1_January2013/V3I1-0220.pdf
http://ijarcsse.com/Before_August_2017/docs/papers/Volume_3/1_January2013/V3I1-0220.pdf
"https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf"Date Accessed = "2020-20-20"
"https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf"Date Accessed = "2020-20-20"
"https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf"Date Accessed = "2020-20-20"

	Introduction
	Advanced Encryption System 128 
	Overview
	Algorithm

	Key addition and inversion
	Add Round Key
	Inverse Add Round Key

	Substitution Operation
	Substitution bytes( ) Transformation
	Inverse Sub-bytes( ) Transformation

	Shifting Operation
	Shift-Rows() Transformation
	Inverse Shift-Rows() Transformation

	Column Operations
	Mix Column
	Inverse Mix Column

	Key Expansion
	SubByte, Rotword and RoundConstant ( Rcon)
	Key Expansion in Pictures

	UART
	UART for 8 bit Data Transfer

	UART 128 bits
	Baud Rate
	Uart Transmitter
	Uart Receiver

	Pipelined Implementation
	Encryption Pipeline
	Division of encryption circuit into three parts
	Three circuits for Encryption
	Final Encryption Pipeline

	Decryption Pipeline
	Division of decryption circuit into three parts
	Three circuits for Decryption
	Final Decryption Pipeline

	Full Implementation

	Result
	Simulation for encryption with uart
	Simulation for decryption with uart
	FPGA Implementation

	Challenges
	Conclusion 
	Verilog : Encryption(CODE)
	encryption_main.v
	main_encrypt.v
	encrypt_first.v
	encrypt_mid.v
	encrypt_final.v
	main_first.v
	main_mid.v
	main_final.v
	addRoundKey.v
	substitution.v
	aes_S_box.v
	shift_rows.v
	mix_col.v
	GF_2_8 multiplier.v

	Verilog : Decryption(CODE)
	decryption_main.v
	inverse_main_decrypt.v
	decrypt_first.v
	decrypt_mid.v
	decrypt_final.v
	inverse_main_first.v
	inverse_main_mid.v
	inverse_main_final.v
	addRoundKey.v
	Inv_substitution.v
	aes_invS_box.v
	inv_shift_rows.v
	inverse_mix_col.v
	inv_GF_2_8 multiplier.v

	Verilog : Key Expansion(CODE)
	key.v
	key_expand.v
	aes_sbox.v

	Verilog : UART(CODE)
	rx.v
	tx.v

	Device Compilation Code
	main.v for FPGA with encryption
	main.v for FPGA with decryption


