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Abstract

This report gives details on the implementation of AES-128 bit encryption and decryption on Verilog
Hardware Description Language and the modelling of real time communication between two NEXYS4
DDR FPGA boards. Advanced Encryption Standard(AES) is a symmetric block cipher defined in US
Federal Information Processing Standard(FIPS). Encryption and Decryption has been an integral part
of communication in the modern world, where a number of exchanges of valuable information take place
through different private and public networks. Secure communication has become a crucial need for our
technological infrastructures and this project intends to explore our industry standard security measures
and explore low-cost embedded applications.
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1. Introduction

With the advent of the digital age, data became the definition of the world around us describing not only
the ambient surrounding but also our personal information. Each data shared between two parties could be
easily accessible bestowing utmost transparency of concerned parties. Hence, the requirement to securely
transfer data became inevitable. Several encryption techniques utilizing the substitution of each letter to
a known and reversible data field came into existence. But, computing power allowed illegal personnel to
decrypt data without authorization. Hence, powerful techniques were required which were immune to attacks
but simpler to process and exchange files. Encryption techniques with personal keys with the aid of already
defined abstract algebra came into popularity. People with keys could easily extract information from jargon
and people without keys would be unable to decrypt despite huge processing power.

Advanced Encryption Standard(AES) is a symmetric block cipher defined in US Federal Information
Processing Standard (FIPS). AES comes in three versions; AES_128, AES_192, and AES_256. The personal
key and the data slice taken are represented by the numeric part of the AES naming system[5]. AES is one
of the most widely used and proven encryption systems used all around the world. AES has resisted all
crypto-analysis and proved unbreakable since its introduction. This paper explores what makes AES such a
successful cryptography technique.

AES encryption system consists of four main operations in encryption and a similar set of operations in
decryption which equalizes the four operations of encryption. Each operation involves different hardware
configurations. Verilog, a hardware description language was used for producing the synthesizable design and
its verification. These hardware configurations were written in a modular format and are reused throughout
each process described in the report.

The other important part of the project was the real-time communication of the Field Programmable Gate
Arrays(FPGA) boards using AES Encryption and Decryption. The communication method of choice im-
plemented between the devices was UART, which stands for Universal Asynchronous Receiver/Transmitter.
UART, an asynchronous serial data transmission protocol was chosen for this particular project because of
its simplicity as well as its minimalist techniques. The basic unit of operation is an 8-bit method that is
8-bits of data is sent or received at a time, and which is expanded to 16 rounds to make it compatible with
128-bit AES. To conclude, whilst plain data see 8-bit data transfer, encrypted/decrypted data works with
16 8-bit data transfers in tandem.

This project is successful in creating a secure real-time communication link between FPGAs, each with
AES-128 bits encryption and decryption. This paper is wrapped around the details of the AES, each
sub-process involved in encryption and decryption techniques, UART protocol and implementation, commu-
nicating different FPGAs as well as with a computer, describing hardware schematics as well as documenting
the results after each process and the final outcome.
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2. Advanced Encryption System 128

2.1. Querview

AES is based on a design principle known as a substitution—permutation network, and is efficient in both
software and hardware[keyl]. AES takes in data in blocks of 128 bits and encrypts them using the input 128
bit cipher key. The basic processing unit for AES algorithm is byte and all operations are done in the Galios
finite field (28). The finite field operations are performed on two dimensional 4*4 array of bytes which is
known as State.

Table 1: AES Transformation Method

in.00 | in.04 | in.08 | in_12

in.01 | in.05 | in.09 | in_13

in02 | in.06 | in_10 | in_14

in03 | in.07 | in_11 | in_15
Input

S00 | S04 | S0O8 | S_12

S 01 | S05| S09 |S.13

S 02 | S06 | S.10 | S_14

S_03 | S07 | S_11 | S_15
Process

out_00 | out_04 | out_08 | out_12

out_01 | out_05 | out_09 | out_13

out_02 | out_06 | out_10 | out_14

out_03 | out_ 07 | out_11 | out_15
Output

L L

LIE &L

The input plain-text is pasted into state as shown above and all operations are done into the state.
The end state is then taken as output. Here’s the main breakdown of all operations involved with AES
Encryption and Decryption.

Enchypiioi Key generation ‘ Dechiyption ‘

128 Bit Input 128 Bit Output
[ ] S

e | [ G
Add Round Key
¢ L

)
z:ﬁfﬁl..f
Shift Row iev{;}
e ey!

K ik Key[3]
i Key[4]
Key(5]
Key[6]
Key([7]
Key[8]
Key[9]

Substitution Bytes Inverse Substitution Bytes

*

Shift Row f Inverse Shift Row

Add Round Key Key[10] Add Round Key
128 Bit Output ’ - ‘ 128 Bit Input

Figure 1: AES-128
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2.2. Algorithm

1. Encryption Algorithm

(a) Key Expansion : Eleven Round Keys are generated from the input cipher key using Key Expansion
algorithm.

(b) Addition of Initial Round Key: A bitwise-XOR operation of initial roundkey (k0) is carried out
with the input data of 128 bits.

(¢) 9 Rounds of Transformations: Following transformations take place in each round, for a total of
nine rounds. As a round is completed, it goes to the beginning of round until completion of 9
rounds. The key changes in each round from (k1) all the way to k(9).

e SubBytes : Each byte of the state is substituted non-linearly using Rijndael S-box.

e ShiftRows: The 16 byte data is arranged in 4 by 4 grid, and shiftRows transformation ( ) is
carried out in the grid.

e MixColumns: The columns of the 4 x 4 matrix is multiplied to a mix_colmns matrix to obtain
output.

e AddRoundKey: A bitwise-XOR operation of the expanded roundkey is carried out with the
data of 128 bits.

(d) 10th Round:

e SubBytes : Each byte of the state is substituted non-linearly using Rijndael S-box.

e ShiftRows: The 16 byte data is arranged in 4 by 4 grid, and shiftRows transformation ( ) is
carried out in the grid.

e AddRoundKey: A bitwise-XOR operation of the expanded roundkey is carried out with the
data of 128 bits.

2. Decryption Algorithm

(a) Initial round:
o AddRoundKey: A bitwise-XOR operation with last part of the expanded roundkey(k10) is
carried out with the encrypted data of 128 bits.
e invShiftRows: Iverse shift row() transformation is done on the output from the step above.
e invSubBytes : Each byte of the state is substituted non-linearly using Rijndael S-box.
(b) 9 Rounds of Transformations: Following transformations take place in each round, for a total of

nine rounds. As a round is completed, it goes to the beginning of round until completion of 9
rounds. The key changes in each round for (k9) all the way to k(1).

o AddRoundKey: A bitwise-XOR operation of the expanded roundkey is carried out with the
data of 128 bits.

e invMixColumns: The columns of the 4 x 4 matrix is multiplied to a inv_mix_colmns matrix
to obtain output. The inv_mix_colmns matrix is the inverse of mix_colmns matrix in GF(2°%).

e invShiftRows: Iverse shift row() transformation is done on the output from the step above.
e invSubBytes : Each byte of the state is substituted non-linearly using Rijndael S-box.

(¢) 10th Round: The ouput from the above step is now XOR’ed with the intial round key (kO)
generated through key expansion algorithm.

13



3. Key addition and inversion

3.1. Add Round Key

Add Round Key Operation

Figure 2: Inverse Add Round Key Pseudo Circuit

In Galios Field(28) the addition operator is realized by bitwise @ operation. AES encryption is based on
Galios Field(2%). The add round key operation is performed by using bitwise @ operator. This operation
defines the relationship between the key used in the encryption and the data. With the initial decided key
that is shared by two concerned organization, both organization employ key expansion methods to produce
10 more keys.[d] Add round key is employed 11 different times to mask the data to be encrypted.

e Pseudo Code for Add Round Key

Output of Add Round Key = 128-Bit Input Data@ 128-Bit Key

The 128-Bit data and 128-Bit key are both arranged in 4 x 4 matrix for graphical representation. Each
element in the matrix cell in 8-Bit data. Corresponding element from key matrix and data matrix are taken
and bit wise € operation is performed to obtain the output as shown in the table In hardware level, the
linear busses are arranged for the required configuration instead of creating a 2D busses.

data_with_key i

; _ D Foo1 1[127:0 Donz?.m - [ data_with_key[127:0]
key[127:0] D_,_‘)RTL e

Figure 3: Add Round Key Schematics.

Table 2: Add Round Key

Do | D4 | D8 | D12 KO | K4 | K8 | K12 A0 | A4 | A8 | A12

D1 | D5 | D9 | D13 K1 | K5 | K9 | K13 Al | A5 | A9 | A13

D2 | D6 | D10 | D14 | @ | K2 | K6 | K10 | K14 | = A2 | A6 | A10 | A14

D3 | D7 | D11 | D15 K3 | K7 | K11 | K15 A3 | A7 | Al11 | A15
Input Data Key Output

14



3.2. Inverse Add Round Key

128
bit E
output =

Inverse Add Round Key

operations

Figure 4: Add Round Key Pseudo Circuit

Bitwise € toggles the bits of input data, whenever there is ‘1’, is the corresponding bit of the Key used
in add round key. Hence, repeating the process using the same key again toggles the same bits to produce
the original data. In terms of abstract algebra, in Galois Field(2®) each number is its own additive inverse.[4]
Hence, the addition operator is realized by bitwise € operation and the subtraction operator is also realized
by the bitwise @ operation. The inverse add round key operation is performed by using bitwise € operator
between the cryptic data and the same key used to create the cryptic data from the original one.

e Pseudo Code for Add Round Key

Original Data = Cryptic Data@ 128-Bit Key

data_with_key i

[ _ D Foo1 11[127:0 Donz?.m == [ data_with_key[127:0)
key[127:0]| )—l—l)RTL o

Figure 5: Inverse Add Round Key Schematics.

Table 3: Inverse Add Round Key

A0 | A4 | A8 Al2 KO | K4 | K8 | K12 DO | D4 | D8 | D12
Al | A5 | A9 | A13 K1 | K5 | K9 | K13 D1 | D5 | D9 | D13
A2 | A6 | AI0 | A14 | & | K2 | K6 | K10 | K14 | = D2 | D6 | D10 | D14
A3 | AT | Al11 | A15 K3 | K7 | K11 | K15 D3 | D7 | D11 | D15
Cryptic Data Key Original Data

15



4. Substitution Operation

4.1. Substitution bytes( ) Transformation

Figure 6: Substitution Bytes Pseudo Circuit

The Sub-bytes Transformation( ) is a byte substitution operation performed on each individual byte of the
128-bit data. Each byte is substituted to a different byte using a well-defined substitution box called S-box.
S-box contains a mapping of each byte from 00 to FF.

fig: AES-Substitution Box
L lofi[2]3]4[5]6[7[8][9]af[b|lc|[d]e]f]
63 | 7C | 77 | /B | F2 | 6B | 6F | C5 | 30 | 01 | 67 | 2B | FE | D7 | AB | 76
CA| 8 | C9 |7 | FA| 59 | 47 | FO | AD | D4 | A2 | AF | 9C | A4 | 72 | CO
B7 |FD | 93 | 26 | 36 | 3F | F7T | CC | 34 | A5 | E5 | F1 | 71 | D8 | 31 15
04 | C7 | 23 | C3 | 18 | 96 | 05 | 9A | 07 | 12 | 80 | E2 | EB | 27 | B2 | 75
09 | 83 | 2C | 1A | 1B | 6E | 5A | A0 | 52 | 3B | D6 | B3 | 29 | E3 | 2F | &4
53 | D1 | 00 | ED| 20 | FC|Bl1| 5B | 6A | CB| BE | 39 | 4A | 4C | 58 | CF
DO | EF | AA | FB | 43 | 4D | 33 | 8 | 45 | F9 | 02 | 7F | 50 | 3C | 9F | A8
51 | A3 | 40 | 8F | 92 | 9D | 38 | F5 | BC | B6 | DA | 21 | 10 | FF | F3 | D2
CD|0C | 13 | EC |5BF | 97 | 44 | 17T | C4 | AT | 7TE | 3D | 64 | 5D | 19 | 73
60 | 81 | 4F | DC| 22 | 2A | 90 | 8 | 46 | EE | B8 | 14 | DE | 5E | 0B | DB
EO | 32 | 3BA | OA | 49 | 06 | 24 | 5C | C2 | D3 | AC| 62 | 91 | 95 | E4 | 79
E7 | C8| 37 | 6D | 8D | D5 | 4E | A9 | 6C | 56 | F4 | EA | 65 | TA | AE | 08
BA| 78 | 25 | 2E | 1C | A6 | B4 | C6 | E8 | DD | 74 | 1F | 4B | BD | 8B | 8A
70 | 3E | B5 | 66 | 48 | 03 | F6 | OE | 61 35 | 57 | B9 | 8 | C1 | 1D | 9E
El1 | F8 | 98 11 |69 | D9 | 8E | 94 | 9B | 1IE | 87 | E9 | CE | 55 | 28 | DF
8C | A1 | 8 | 0D | BF | E6 | 42 | 68 | 41 99 | 2D | OF | BO | 54 | BB | 16

(O[O0 |T|Q | O 0[N |k |w N~ O

The S-box is constructed by performing the following transformation:

e Calculate the multiplicative inverse in the finite field GF(28) of the byte.

e Apply the following transformation to the byte:

by = bi D biraymods B biit5)mods D b(it6)ymods D biit+7ymods B ¢
Here, b; represents i‘h bit of the byte and c¢; represents i*h of a constant byte with a value of 63.

16



The second operation is performed in each bit of the entire byte by through b7[[5]]. As the above two
transformations are performed in each byte ranging from 00 to FF, a S-box is generated which contains
the unique mapping of each byte as shown below:

And, the substitution byte for the input byte is determined by looking at the intersection of row and
column. For example, the substitution byte of 59 will the intersection of a row with index ’5’ and column
with index ’9” which is cb. It can be located in the substitution box below.

e Pseudo code for substitution byte transformation :

S-box( data[0:7], substituted-data[0:7])
This is for the first byte and it goes all the way down to 16" byte where a byte is mapped to a different
byte using the S-box.

Table 4: Sub bytes () Transformation

A0 | A4 | A8 | Al2 SO | S4 | S8 | S12
Al | A5 | A9 | A13 S1 | S5 | s9 | S13
A2 | A6 | A10 | A14 | = | S2 | S6 | S10 | S14
A3 | A7 | A1l | A15 S3 | S7 | S11 | S15

The schematics of sub-bytes( ) transformation is shown below:

Figure 7: Sub-bytes Schematic View

17



4.2. Inverse Sub-bytes( ) Transformation

Inverse Substitution Bytes
Operation

Figure 8: Inverse Substitution Bytes Pseudo Circuits

The Inverse Sub-bytes( ) Transformation is also a byte substitution operation performed on the individual
byte of the 128-bit data during decryption. It is similar to sub-bytes( ) Transformation where each byte is
substituted to a different byte using a well-defined substitution box called Inverse S-box. Just like S-box,
this also contains a mapping of each byte from 00 to FF and is inverse of the S-box.

And, the substitution byte for the input byte is determined by looking at the intersection of row and
column. For example, the substitution byte of cb will the intersection of a row with index ¢’ and column
with index ’b’ which is 59. This can be located in the Inverse Substitution box below.

fig: AES-Inverse Substitution Box
Lol 12345 [6[7][8]9]af[blc|]d]el]f]
52 | 09 | 6A | D5| 30 | 36 | A5 | 38 | BF | 40 | A3 | 9E | 81 | F3 | D7 | FB
7C| E3 |39 |8 | 9B | 2F | FF | 87 | 34 | 8E | 43 | 44 | C4 | DE | E9 | CB
50 | 7B | 94 | 32 | A6 | C2 | 23 | 3D |EE | 4C | 95 | 0B | 42 | FA | C3 | 4E
08 | 2E | A1 | 66 | 28 | D9 | 24 | B2 | 76 | 5B | A2 | 49 | 6D | 8B | D1 | 25
72 | F8 | F6 | 64 | 8 | 68 | 98 | 16 | D4 | A4 | 5C | CC | 5D | 65 | B6 | 92
6C | 70 | 48 | 50 | FD | ED | B9 | DA | 5E | 15 | 46 | 57 | A7 | 8D | 9D | &4
90 | D8 | AB| 00 | 8C | BC | D3 | OA | F7 | E4 | 58 | 05 | B8 | B3 | 45 | 06
DO|2C | 1IE | 8F |CA | 3F | OF | 02 | C1 | AF | BD | 03 | 01 13 | 8A | 6B
3A | 91 11 | 41 | 4F | 67 | DC | EA | 97 | F2 | CF | CE | FO | B4 | E6 | 73
96 | AC| 74 | 22 | ET |AD | 35 | 8 | E2 | F9 | 37 | E8 | 1C | 75 | DF | 6E
47 | F1 | 1A | 71 | 1D | 29 | C5 | 89 | 6F | BT | 62 | OE | AA| 18 | BE | 1B
FC| 56 | 3E | 4B | C6 | D2 | 79 | 20 | 9A | DB | C0O | FE | 78 | CD | 5A | F4
1IF | DD | A8 | 33 | 8 | 07 | C7 | 31 | Bl | 12 | 10 | 59 | 27 | 80 | EC | 5F
60 | 51 | 7F | A9 | 19 | B5 | 4A | 0D | 2D | E5 | 7TA | 9F | 93 | C9 | 9C | EF
A0 | EO | 3B |4D | AE | 2A | F5 | BO | C8 | EB | BB | 3C | 8 | 53 | 99 | 61
17 | 2B | 04 |7TE | BA | 77 | D6 | 26 | E1 | 69 | 14 | 63 | 55 | 21 | 0C | 7D

O[]0 |T|Y | O[T k|w|N—|O

e Pseudo code for Inverse substitution byte transformation :

Inverse-S-box( data[0:7], inverse-data[0:7])
This is for the first byte and it goes all the way down to 16" byte where a byte is mapped to a different
byte using inverse S-box.
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Table 5: Inverse Sub bytes () Transformation

S0 | S4 | S8 | S12 A0 | A4 | A8 | A12
S1|S5| S9 | S13 Al | A5 | A9 | A13
S2 | S6 | S10 | S14 | = | A2 | A6 | A10 | Al4
S3 | S7 | S11 | S15 A3 | A7 | A11 | A15

The schematics of inverse sub-bytes( ) transformation is shown below:

5
)
H
1

S

o
-

Figure 9: Inverse Sub-bytes Schematic View
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5. Shifting Operation

5.1. Shift-Rows() Transformation

Shift Rows Operation

Figure 10: Shift Rows Pseudo Circuits

The shift rows() transformation is about shifting bytes in each row of a matrix by a certain offset as deter-
mined in the algorithm. The data are arranged in a 4 by 4 grid which is shown in the figure below. The
following transformation is applied in each row[5]:

e The first row is left unchanged.

e The bytes in the second row are shifted one position to the left.

e The bytes in the second row are shifted two positions to the left.

e The bytes in the second row are shifted three positions to the left.
The array of bytes before and after transformation is shown below:

Table 6: Shift Rows () Transformation

S0 | S4 | S8 | S12 SO | S4 | S8 | S12
S1 | S5 | S9 | S13 S5 | 89 | s13 | S1
S2 | S6 | S10 | S14 | = | S10 | S14 | S2 | S6
S3 | S7 | S11 | S15 S15 | S3 | S7 | S11

e Pseudo code for shift rows( ) transformation :

shifted byte[0:7] = substituted byte[0:7]

shifted byte[8:15] = substituted byte [104:11]

shifted byte[16:23] = substituted byte [80:87]

shifted byte [24:31] = substituted byte [53:63]

This is for the first column, and the pattern is similar for all the other columns as shown in figure
above.
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5.2. Inverse Shift-Rows() Transformation

Figure 11: Inverse Shift Rows Pseudo Circuits

The Inverse shift rows() transformation is about shifting bytes in each row of a matrix by a certain offset as
determined in the algorithm during decryption. The following transformation is applied in each row:

e The first row remains unchanged.
e The bytes in the second row are shifted one position to the right.
e The bytes in the second row are shifted two positions to the right.

e The bytes in the second row are shifted three positions to the right.

The array of bytes before and after transformation is shown below:

Table 7: Inverse Shift Rows () Transformation

S0 | S4 | S8 | S12 S0 | S4 | S8 | S12
S1 | S5 | S9 | S13 S13 | S1 sH S9
S2 | S6 | S10 | S14 | = | S10 | S14 | S2 | S6
S3 | S7 | S11 | S15 S7 | S11 | S15 | S3

e Pseudo code for inverse shift rows/( ) transformation :
inverse shifted byte[0:7] = inverse mix-column byte[0:7]
inverse shifted byte[8:15] = inverse miz-column byte [40:47]
inverse shifted byte[16:23] = inverse miz-column byte [80:87]
inverse shifted byte [24:31] = inverse miz-column byte [120:127]

This is for the first column, and the pattern is similar for all the other columns as shown in figure
above.
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6. Column Operations

6.1. Mix Column

Figure 12: Mix Column Pseudo Circuits

Mix Column operation is a crucial part of AES Encryption Decryption. Mix Column utilizes finite field
arithmetic in Galois Field(2®). 128-bit data is accepted in each mix column operation and it returns 128-bit
data[5]. The 128-bit data entered is arranged in a 4 x 4 matrix. The 4 x 4 matrix contains 16 elements as
shown in table [§] Each element is of size 8 bit which can be represented by 2 hexadecimal characters.

Table 8: Mix Col Matrix and Input Data Matrix
Input Data Matrix

D0 | D4 | D8 | D12
and | D1 | D5 | D9 | D13
D2 | D6 | D10 | D14
D3 | D7 | D11 | D15

After the input data is arranged in 4x4 matrix, it undergoes matrix multiplication with the Mix Col
Matrix as shown is table

Table 9: Mix Column Operation
Input Data Matrix

DO | D4 | D8 | D12
x | D1 | D5 | D9 | D13 | =
D2 | D6 | D10 | D14
D3 | D7 | D11 | D15

Column Wise multiplication is visualized in table [I0]

Table 10: Column wise multiplication in Mix Col Operation

Input Col Output Col
D, O,
X | Dnt1 = | Onq1
D, o On—+2
D n+3 On+3

n € {0,4,8,12}
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The matrix multiplication only involves multiplication by 01,02 and 03 in Galios Field(2%) .

e Irreducible Polynomial
The irreducible polynomial z® + z% + 23 + x + 1 is utilized if our multiplication operation exceeds 8
bits. Since, our multiplication only involves multiplication by 01,02 and 03, the irreducible operation
only needs to be subtracted once. This will provides us the remainder when our 9 bit output is divided
by the irreducible polynomial. But, since we onlyt need 8 bit as our output, we can ignore the ninth
bit from the beginning and just utilize 2* + 23 + 2 + 1 as our irreducible polnomial.

e Example of Remainder

Table 11: Remainder of 100000000 when divided by irreducible polynomial (2°8)

e Multiplication by 01
Multiplication by one returns the original input as nothing is changed.

8

bit multiply 01
in

Figure 13: Pseudo Circuit for multiplication by 1
e Multiplication by 02

Table 12: Algorithm for Multiplication by 2
‘Input ‘a‘b‘c‘d|e‘f‘g‘h |

isa=lor0

ifais1

ifais0

[N}
w



Figure 14: Pseudo Circuit for multiplication by 2
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e Multiplication By 03
In Galois Field(28) , multiplication is distributive over addition. Hence multiplication by 03 can be
converted to multiplication by one and two.

input x 03 = input x (11) = input x (10 ® 01) = input x 10 ® input x 01 = input X 2 B input

Thus, utilizing multiplication by 02, we can achieve multiplication by 03.

Multiply 02

Figure 15: Pseudo Circuit for multiplication by 3

e Addition
Addition in GF(2%) is simply bitwise xor operation.

Figure 16: Pseudo Circuit for multiplication by 3

Hence, Mix Column operation is conducted in GF(2%) feild using the above principle of multiplication and
addition.
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COL1

data_in[0:127] [ =——fp—s2alll2

multiplied datal[7:0
—

L —Dinverse_mixdata[0:127]

8:15 data2[7:0 multiplied data2[7:0 7:0
;—L—L_ — |
16:23  data3[7:0 - multiplied dﬁS[?:O] 7:0
24:31 data4[7:0 multiplied data4[7:0] 7:01

p- S
inv_GF_2_8_multiplier
COoL2
’3_2:39 datal[7:0 multiplied datal[7:0] 7:01
40:47 data2[7:0 multiplied data2[7:0] 7:0
48:55  data3[7:0 multiplied data3[7:0] 7:0
56:63  datad[7:0 multiplied data4[7:0] 7:0
inv_GF_2_8 multiplier
COL3
64:71 datal[7:0 multiplied datal[7:0] 7:0
72:79 data2[7:0 multiplied data2[7:0] 7:0
80:87 data3[7:0 multiplied data3[7:0] 7:0
’8_8:95 data4[7:0 multiplied data4[7:0] 7:0
inv_GF_2_8_multiplier
CcoL4
96:103 _ datal[7:0 - multiplied dat_al[7:0] 7:0
104:111 data2[7:0 - multiplied dzLa2[7:0] 7:0
112:119 data3[7:0 - multiplied dm_a3[7:0] 7:0
120:127 datad[7:0 multiplied_data4[7:0] 7:0

inv_GF_2_8_mu

tiplier

Figure 17: Schematic View of Mix Columns
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6.2. Inverse Mixz Column

Figure 18: Inverse Mix Column Pseudo Circuits

Inverse Mix Column operation inverts the changes performed to Mix Column. [4] It utilizes finite field
arithmetic in Galois Field(2®). 128-bit data is accepted in each inverse mix column operation and it returns
128-bit data. The 128-bit data entered is arranged in a 4 x 4 matrix. The 4 x 4 matrix contains 16 elements
as shown in table Each element is of size 8 bit which can be represented by 2 hexadecimal characters.

Table 13: Inverse Mix Col Matrix and Input Data Matrix
Input Data Matrix

DO | D4 | D8 | D12
and | D1 | D5 | D9 | D13
D2 | D6 | D10 | D14
D3 | D7 | D11 | D15

After the input data is arranged in 4x4 matrix, it undergoes matrix multiplication with the Inv Mix Col
Matrix as shown is table [[4l

Table 14: Inv Mix Column Operation
Input Data Matrix

DO | D4 | D8 | D12
x | D1 | D5 | D9 | D13 | =
D2 | D6 | D10 | D14
D3 | D7 | D11 | D15

Column Wise multiplication is visualized in table [T5}

Table 15: Column wise multiplication in Inv Mix Col Operation

Input Col Output Col
S
X | Dpiq = | Opq1
Do On+2
D n+3 On+3

n € {0,4,8,12}
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The matrix multiplication only involves multiplication by 0E,0B,0D, and 09 in Galois Field(2%).

e Multiplication by 09

input x 09 = input x (00001001) = input x (1000 & 0001) = (input x 1000) & (input x 0001)
input x 1000 = input x (10) x (10) x (10) = input X 2 x 2 x 2
nput x 0001 = input

Hence,
input X 09 = (input x 2 X 2 x 2) & (input)

Multiply_02 Multiply_02 Multiply_02

Figure 19: Pseudo Circuit for multiplication by 09

e Multiplication by 0B

inputx0B = inputx(00001011) = inputx (10006001060001) = (inputx1000)& (inputx0010)E (input x0001)
input x 0B = (input x 2 X 2 x 2) & (input X 2) & (input)

Smart Implementation by reducing repetition:

input X 0B = (((input x 2 x 2) @ input) x 2) ® input

Multiply 02 Multiply 02 A Multiply_02

Figure 20: Pseudo Circuit for multiplication by 0B
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e Multiplication by 0D

inputx0D = inputx (00001101) = inputx (10006600100650001) = (inputx1000)&(inputx 0100)$ (input x0001)
input x 0D = (input X 2 x 2 x 2) @ (input x 2 x 2) @ (input)

Smart Implementation by reducing repetition:

input X 0D = (((input X 2) @ input) X 2 X 2) @ input

Multiply_02 Multiply_02 Multiply_02

Figure 21: Pseudo Circuit for multiplication by 0D

e Multiplication by OE

inputx0E = inputx (00001110) = inputx (100060010040010) = (inputx1000)S (input x0100)&(input x 0010)
input X OF = (input x 2 X 2 x 2) & (input X 2 X 2) & (input X 2)

Smart Implementation by reducing repetition:

input X OF = (((input x 2) @ input) X 2) @ input) X 2

Multiply 02 Multiply_02 Multiply 02

Figure 22: Pseudo Circuit for multiplication by OE
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COL1

data_in[0:127] [ =——fp—s2alll2

multiplied datal[7:0
—

L —Dinverse_mixdata[0:127]

8:15 data2[7:0 multiplied data2[7:0 7:0
;—L—L_ — |
16:23  data3[7:0 - multiplied dﬁS[?:O] 7:0
24:31 data4[7:0 multiplied data4[7:0] 7:01

p- S
inv_GF_2_8_multiplier
COoL2
’3_2:39 datal[7:0 multiplied datal[7:0] 7:01
40:47 data2[7:0 multiplied data2[7:0] 7:0
48:55  data3[7:0 multiplied data3[7:0] 7:0
56:63  datad[7:0 multiplied data4[7:0] 7:0
inv_GF_2_8 multiplier
COL3
64:71 datal[7:0 multiplied datal[7:0] 7:0
72:79 data2[7:0 multiplied data2[7:0] 7:0
80:87 data3[7:0 multiplied data3[7:0] 7:0
’8_8:95 data4[7:0 multiplied data4[7:0] 7:0
inv_GF_2_8_multiplier
CcoL4
96:103 _ datal[7:0 - multiplied dat_al[7:0] 7:0
104:111 data2[7:0 - multiplied dzLa2[7:0] 7:0
112:119 data3[7:0 - multiplied dm_a3[7:0] 7:0
120:127 datad[7:0 multiplied_data4[7:0] 7:0

inv_GF_2_8_mu

tiplier

Figure 23: Schematic View of Inverse Mix Columns
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7. Key Expansion

128 Bit input

Key generation

Key_0128 Bit Key_1128 Bit Key_3 128 Bit Key_a 128 Bit Key_5 128 Bit Key_6128 Bit Key_7128 Bit Key_8 128 Bit Key_9 128 Bit Key 10128Bit  Key 11128Bit

Figure 24: Key Generation pseudo circuit

Overview : Round Keys required for each AddRoundKey iteration is derived from a single Cipher Key
by the means of the KeyExpansion algorithm. In AES_128, we have 11 total key additions that require 11
keys[3]. Each key is 128 bit and is divided into 4 words of 1 byte length to perform mathematical operation.
The first four words i.e w[0],w[1],w[2],w[3] contains the input cipher key. The key expansion Pseudocode is
given below:

KeyExpansion( [127:0] cipher key, [127:0] expanded key[0:10])

{

If (nr == 0)

W[0] = cipher key(127: 96)
w[l] = cipher key(95:64)
w[2] = cipher key(63: 32)
w[3] = cipher key(31:0)

expanded key = {w[0],w[l],w[2],w[3]}
else
for(i = 1; i < 11, nr = 4*1i ; i++)

temp = W[ nr - 1];

temp = SubByte (RotByte(temp)) *~ Rcon[];

Winr] = W(nr -4) ~ temp;

Wlnr+l] = W(nr ) *~ w(nr - 3) :

Winr+2] = W(nr +1) ~ w(nr - 2) !

Winr+3] = W(nr +2) * w(nr - 1) ;!

expanded key = {W[nr],W[nr+l],W[nr+2],W[nr+3]}

}

}

Figure 25: Key Generation pseudo code

Initially, the input cipher key is divided into four 32 bit words; w[0], w[1], w[2], and w[3]. We call this
round zero. We use the word which contains the least significant bits of the previous key (w[3], w[7], w[11]..)
and passes it sequentially to ROTWORD, then SUBBYTE, and then bitwise XOR with RCON. Then, the
temp result and other previous words are used to calculate further words as we go along. At i = 10, we get
our final word, w[43], and thus 11 keys are generated. The key expansion is designed in such a way that
if a single bit in the input key sequence changes, it would affect every other key generated afterward. We
explain the main operations; ROTWORD, SUBBYTE, and RCON below:
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7.1. SubByte, Rotword and RoundConstant ( Rcon)

RotWord

RotWord performs a one-byte circular left shift on a word. This means that an input word [B0, B1, B2, B3]
is transformed into [B1, B2, B3, B0].[3]

Subword

SubByte performs a byte substitution on each byte of its input word, using the Rijndael S-box as de-
scribed above in Section 5.1. [3]

Rcon
Rcon, as described by the Rijndael documentation, is the exponentiation of 2 to a user-specified value.

This operation is not performed with regular integers, rather in Rijndael’s finite field. RCON could be
expressed as:

1 ifi=1
re; = 2-rei_1 if7 > 1 and re;—; < 8016
(2-7¢i—1) @ 11Byg  if¢ > 1 and re;; > 8046

Figure 26: Round Constant(RCON)

where multiplication is defined in the Galius Field (GF(2%)). [3]

Round |1 |2 |3 |4 |5 |6 |7 |8 9 10
Hex 01 | 02 | 04| 08 | 10 | 20 | 40 | 80 1b | 36
Dec 01 02|04 |08 |16 | 32| 64 | 128 | 27 | 54

Let look at Rcon(9) ,
Rcon(9) = 2 % Reon(9 — 1)

Recon(9) = 2 x Reon(8)
Since the mulitplication is over (GF(2%)),

Rcon(9) = 2 * Reon(8)mod(x® + x* + 2% + z + 1)
Rcon(9) = 256mod(x® + 2* + 23 + . + 1)
Now, 256 in polynomial form is 1 * 28 where x = 2. So our operation returns as :

Reon(9) = 8mod(8+4+3+1+0)

where the numbers represent the powers of the binary number. We illustrate this operation below:
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Table 16: Round Constant(RCON) Generation Over Galios Field (2°8)
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7.2. Key FExpansion in Pictures

h 4

125 bit input key

o

Key0(127:28) Key0{05:84) KeyD[B3:22) Key0(31:0)
| bl " b1 I b2 " b3
RotWord
I
Substitution
- % - | =1 " 52 | 53 | S0
] ] } |Ronn{|:||| || | oo
Recon Matrix
r
Bitwise 4 -
—"*69 XOR » (1) AR ALY
¥ r 4 ¥
Key1{127:08) Wey1{25:84) Key1(53:32) Key1(31:00)

Figure 27: AES_128 Key Schedule
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Figure 28: AES_128 Key Expansion Schematics
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8. UART

8.1. UART for 8 bit Data Transfer

When we talk about connecting our phone to a computer or vice-versa for any kind of file transfers, USB
is the most widely used interface which allows from charging our phones to sending/receiving files at a high
speed to and from another device. In a similar manner, for hardware communication purposes, or simply
communicating FPGA with a computer, we need an interface and protocols that govern the transfer and
receiving of data. UART is one of the simplest and widely used methods of talking to the FGPA using a
computer and also communicating different FPGAs.

UART stands for Universal Asynchronous Receiver /Transmitter. By definition, it is a hardware commu-
nication protocol that uses asynchronous serial communication with configurable speed where asynchronous
means there is no clock signal to synchronize the output bits from the transmitting device going to the
receiving end. A UART is an interface that sends out usually a byte at a time over a single wire. Embedded
systems, micro-controllers, and computers mostly use UART as a form of device-to-device hardware commu-
nication protocol as well as a way to talking to the FPGAs. Two UARTSs directly communicate with each
others using two wires for their transmitting and receiving ends.

The two signals of each UART device are named Transmitter(Tx) and Receiver(Rx). The main motive
of a transmitter and receiver line for each device is to transmit and receive serial data intended for serial
communication. The UART transmitter and receiver have to agree on some parameters, such as:

Baud Rate: 9600

e Number of data bits: 8

Parity Bit : 0

Stop Bits: 1

e Flow Control: None

Baud rate: The frequency at which the receiver captures the incoming bits and colloquially, the frequency
at which the transmitter sends the outgoing bits.

The number of data bits: It is set to eight bits at a time. That means, in each round, a byte is sent over
the channel.

Parity bit: It is to check the validity of the transmitted data over UART, and is appended after the data
is sent which is calculated by doing an XOR operation on all of the bits.

Stop Bits: A stop is always set is 1, and it indicates the end of transmission of a byte.

Flow Control: It is likely to be set to None, and is not widely used in present days applications.
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Detect :Data In=0 &7 ial\ Stop reading

Figure 29: UART

Working Mechanism:
1) Uart receives parallel data from the data bus and creates a serial packet and adds a start bit stop bit and

a parity bit.
2) Start bit pulls UART line to 0 (usually kept at 1), which indicates the receiver to capture incoming data

while stop bit will stop communication by pulling the line back to 1.
3) The receiver will ignore start, stop, and parity bits and captures data into the parallel stream, and sends

it to the data buses. [I]

Now, we will talk about the UART transmitter and UART receiver in details.
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9. UART 128 bits

9.1. Baud Rate

Baud rate is the rate at which information is transferred in a communication channel that includes the
number of bits exchanged per second in serial communication between two devices. It is quite important in
the UART channel as UART protocol is asynchronous and thus, is necessary for the transmitter and receiver
to transfer and receive the data at the same speed. In the serial port, the baud rate of 79600 baud” means
a maximum of 9600 bits of data can be transferred per second.

For example, the FPGA board has a 100 Mhz clock cycle, with a baud rate of 9600 bits per seconds,
each bit is being transferred and received every 10417 cycles (i.e. 100000000 cycles/sec — 9600 bits/sec).
And, each bit is being captured exactly in the midway of 10417 cycles for the consistency and accuracy of
the data.

The UART line stays at logic high '1’, and a transmitter is activated, with start bit ’0’, the line is active
and transmits 8 bits serially, the end recognized by the stop bit '1’, and then the UART line stays at high
logic '1” and wait for the next stream of data. A similar procedure occurs in the receiver side, which remains
at logic high ’1’ and as it receives the start bit ’0’, it captures the next 8 bits of data at the baud rate serially
and remains logic high "1’ at the completion and wait for the next stream of bits. [2]

Table 17: Baudrate and clocks per bit selection
FPGA clock speed | 100MHZ

Baud_rate 9600 bits per seconds

clock_per_bits 10417 clock cycles per bit

9.2. Uart Transmitter

da

a[127:0] out
data_out_tx

data_state

Figure 30: UART-128 bit Transmitter Input Output
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Table 18: Input/Output wire for Uart Transmitter

I/0 Wire Size(bit) | Utilization
clock 1 Clock for operations
data 128 data that needs to be sent
data_state Data_ state is a flag that initiates the transmitter module.
Input reset Resets the transmitter to state Init.
Output | dataout_tx | 1 Output pin.
Reset = 1

Datastate =0

byte counter =15

Datastate = 1

Data sent selection

Write Data

Figure 31: UART-128 bit Transmitter State Diagram
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1. Init: In this state is the transmitter goes to state setup if the data_state flag from the receiver is 1.

Start out=1

State: init

is data_state=1? YES—p| State: setup

Figure 32: State Init

2. Setup:In this state, the transmitter breaks the 128 bit data into 16 8bit chunks, assigns start and
stops bits making it 10 bits of data and passes it to the next state i.e. Write Data.

State: setup W

y

State: writedata

clock_counter=clock_per_bit

bit_counter=0

— data_send=[1,1,data[127-byte counter*8:120-byte counter*8,0]

Figure 33: State Setup
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3. Write Data:In this state, the transmitter sends the chunk of data received from Setup state and
assigns it to the output transmitter pin every clocks_per_bits number of cycles. If the number of bytes
sent is 16 then it goes to state Init. If the number of bytes sent is not 16 , it increments the number
of bytes sent counter by 1 ignoring the start and stop bits and goes to state Setup again.

State: writedata is clock_counter=clock per_bit?

is bit_counter=10?

is byte_counter=15?

No

A
\

out=data_send[bit_counter] . State: init State:
clock_counter=0 bit_counter++ Writedata

Figure 34: State Writedata

\

lock_counter+

byte counter++
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9.3. Uart Receiver

clk

DUT1

data_out127:0]

data_in

data_state

Figure 35: UART-128 bit Receiver Input Output

Table 19: Input/Output wire for Uart Reciever

I/O0 Wire Size(bit) | Utilization
clock 1 Clock for operations

Input data_in 1 It represents the pin that acts as reciever for FPGA.
data_out 128 Output pin.

Output | data_state | 1 Flag that represents new set of 128 bit has been received.

INIT

Waits for one clock_per_bits
and goes to INIT

When 128 bits of data is

received ,sends new data Stop
flag to encrypter or

decrypter.

Data_in=0

Start

Waits for half clock_per _bits
and goes to Read

Takes value of rx pin as input

Read every clocks_per_bit

After taking 8 bit inputs

Figure 36: UART-128 bit Receiver State Diagram
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1. Init: The FPGA waits until Data_in = 0 and then goes to Start.

YeS—— data_state=0

Start

is clock_counter=clock_per_bit<<3?

State: init

Xclock_counter+

»| State: Start

'8 clock_counter=0

is data_in=0?

Figure 37: State Init

2. Start: It waits for half clocks_per_bits and checks if the Data_in is still 0. If Data_in is still 0, it
proceeds to next state i.e. Read.

State: start

is clock_counter=clock_per_bit>>1? (o aC|OCk_counter+

YES
'S clock counter=0

YES.
—
p-| State: readd;
is data_in=0?
——
NO State: init

Figure 38: State Start
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3. Read:In this state, the receiver reads 8 bits of data from the Data_in pin every clock_per_bits cycle
and increments the number of bytes received by 1. Then, it proceeds to next state i.e. Stop.

is clock_counter=clock_per_bit?

State: readdata

no_of_bits=7?

A

update the
State: st temp128data i clock_counter=0
aie: Stop out clock_counter=0 Savec':::::tlt = no_of bits++ icKScolntert

Figure 39: State Read data

4. Stop:In this state, the receiver checks is the number of bytes received is 16 or not. If it has received
16 bytes of data, it updates the data_out register and also sends a flag that new data has been
received.Then, it proceeds to next state i.e. Init.

NO. '8 data_state=0

Is no_of_bits=127?

data_state=1

State: stop
NO. F¥clock counter+:

is clock_counter=clock_per_bit?
clock counter=0

=<
i
7]

Figure 40: State Stop
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5. Every Clock Cycle: Every rising edge of FPGA clock, the device checks if the state is stop or init.
If the state is stop, then it saves the 8 bit acquired data to a temporary input. It also check if the total
acquired data is 128 data and released the 128 bit to the output of receiver.

If the state is init then, it clears the output of data after waiting for clock_per_bit times 160 clock
cycles.

init

Stop

is number of
bits=127?

Yes

2 assign
save the 8 bit final128bit reset data_out

to f;nuatg.StSblt output to temp_clock counter=0 temp_clock counter++

data_out

Figure 41: Every rising edge of FPGA clock
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10. Pipelined Implementation

The entire process of encryption and decryption is broken down to small steps which are pipelined for efficient
transmission of files.

128 Bit Input ] B ’ ! 128 Bit Output

| AddRoundKey ' Add Round Key

~Key[1]
Key[2] : ; : I
Key(3] ~ Ay Inverse Sh.iftl
Key[4]
Key[5]
e | Keyil
Add Round Key '’ Key[7] TS
Key[S] ; Add Round Key
Keyls] | S

Substitution Bytes \ : - Inverse Substitution Bytes

Shift Row s _ ' Inverse Shift Row

Add Round Key Add Round Key

128 Bit Output —~ ; ~ 128 Bit Input

Figure 42: Full AES Encryption, Decryption and Key Generation.
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10.1. Encryption Pipeline

This is the encryption process. Key generation is a circuit without registers so they are ignored. Appropriate
keys are passed at appropriate circuits.

Jit Input

Add Round Key
-

Add Round Key

Substitution Bytes

) 4

Add Round Key

Figure 43: Full AES_128 bit Encryption.

10.1.1. Dwision of encryption circuit into three parts

The full encryption shown in figure [43] is broken down to three chunks as shown in figure [44] These three
chunks as combined to form three circuits as shown in figure [45]

i
L
E Substitution Bytes
-

Add Round Key Shift Row

\l'/ \l/

Figure 44: Encryption Broken down to different parts that can be in turn implemented to state machine.
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10.1.2. Three circuits for Encryption

Each of these circuit take in 128 bit data and output 128 bit data. Combination of these three circuits
represents complete encryption. The circuit First has three parts as the inital circuit has only add roundkey

whilst Between circuit and Final Circuit are more complex.

Figure 45: Three main circuit for Encryption.

Each of these three circuit are combine with a state machine circuit. The state machine circuit algorithm
is shown in figure [46] The FSM circuit takes a data_state and 128 bit data as input.The FSM assigns the
128 bit data to the circuit associated with it. After waiting for clock_per_bit times 16 clock cycles, the FSM
changes the output of to the new 128 bit data which is the output of the device associated with it. It also

sends a completion flag (data_state)as output.
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Start

is
clock_counter=clock_per_bit<<4 ?

is data_state=1?

clock counter=0

State=encode temp_encoded_state=0 clock counter++

State: encode

value of clock_counter

temp_encoded_state=1
clock counter=0 temp_encoded_state=0

clock _counter++
clock _counter++

output=device output
state=init

Figure 46: State machine implementation of different part of Encryption.
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10.1.3. Final Encryption Pipeline

128 Bit Processed Data

Completion Status

Between

Between

Between

Figure 47: Final Encryption Pipeline

Each of these devices above i.e. First, Between and Last has the following input and output as shown in
the table The encode_state is connected to data_state of the next circuit and the data_out is connected
to the data_in of the next circuit.

Table 20: Input/Output wires for First, Between and last

I/o Wire Size
128

Input 1
128

Output 1

These are wires which are connected to internal registers
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10.2. Decryption Pipeline

This is the decryption process. Key generation is a circuit without registers so they are ignored. Appropriate
keys are passed at appropriate circuits.

128 Bit Input

/—y' L )y
L

Inverse Shift Row

Add Round Key

Inverse Shift Row

Add Round Key

Inverse

Substitution e
Bytes Inverse Substitution Bytes

L
9

Rounds?

—

128 Bit Output

Figure 48: Full AES_128 bit Decryption.

10.2.1. Dwvision of decryption circuit into three parts

The full decryption shown in figure [48]is broken down to three chunks as shown in figure [49] These three
chunks as combined to form three circuits as shown in figure [50]

i

C D @ N
Add Round Key Add Round Key

Inverse Mix Col

&

Inverse Shift Row

L Add Round Key
Inverse Shift Row
Inverse -

Bytes
AN l J A\ 4

Figure 49: Decryption broken down to different parts that can be in turn implemented to state machine.
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10.2.2. Three circuits for Decryption

Each of these circuit take in 128 bit data and output 128 bit data. Combination of these three circuits
represents complete encryption. The circuit Last has three parts as the final circuit has only add roundkey
whilst between circuit and First Circuit are more complex.

Figure 50: Three main circuit for Decryption.

Each of these three circuit are combined with a state machine circuit. The state machine circuit algorithm
is shown in figure The FSM circuit takes a data_state and 128 bit data as input.The FSM assigns the
128 bit data to the circuit associated with it. After waiting for clock_per_bit times 16 clock cycles, the FSM
changes the output of to the new 128 bit data which is the output of the device associated with it. It also
sends a completion flag (data_state)as output.
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Start

is
clock_counter=clock_per_bit<<4 ?

is data_state=1?

clock counter=0

State=encode temp_encoded_state=0 clock counter++

State: encode

value of clock_counter

temp_encoded_state=1
clock counter=0 temp_encoded_state=0

clock _counter++
clock _counter++

output=device output
state=init

Figure 51: State machine implementation of different part of Decryption.
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10.2.3. Final Decryption Pipeline

128 Bit Processed Data

Completion Status

Between

Between

Between

Figure 52: Final Decryption Pipeline

Each of these devices above i.e. First, Between and Last has the following input and output as shown in
the table 211 The encode_state is connected to data_state of the next circuit and the data_out is connected
to the data_in of the next circuit.

Table 21: Input/Output wires for First, Between and last

I/o Wire Size
128

Input 1
128

Output 1

These are wires which are connected to internal registers
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10.3. Full Implementation

Finally each of these devices i.e. receiver, encrypter/decrypter and transmitter are connected. Receiver takes
in data, completes receiving 128 bit data and outputs the 128 bit data and a completion flag. When the
encrypter/decrypter sees a completion flag, it starts to encrypt/decrypt the data. Once encrypter/decrypter
completes encryption/decryption, it outputs the encrypted/decrypted data along with a completion flag.
Once the transmitter sees a completion flag, it starts to transmit the 128 bit data which is the output of
encrypter/decrypter. The python codes is created with encryption/decryption requirement of 128 bit data.

E
R N
E C
C R
E Y
| P
vV I
E E
R R

=TS =Ty T
= = i o O W = M - il e 8 O
ImMme— =S Z>»=

Computer

Figure 53: State machine implementation of different parts of Encryption

Python data_sender code reads a file, and makes it a multiple of 128 bit by adding 8'b11111111 multiple
times at the end of the data. Similarly, the python receives code, reads data and ends reading data whenever
it encounter 8’b1111111. Hence, the data used to convert out data to a multiple of 128 bit is also used as
end flag by receiver.
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11. Result

11.1. Simulation for encryption with uart

r w{r ]
e — - — ——

e e e e T e VYT Y YT T T

Figure 54: Final implementation, Computer to FPGA with encryption

11.2. Simulation for decryption with uart

\ \ \ \
| {IJUII_ILIIII\‘H]TLIJIHII'III ‘IIUI III! | |

S, G S

Figure 55: Final implementation, FPGA to Computer with decryption

11.8. FPGA Implementation

A large sized text is sent from computer and the another computer receives the data. The data is received
without corruption. The encryption and decryption process is hidden from the user. There is a latency of
30 ms due to receiving and transmitting process along with encryption and decryption process.



12. Challenges

1. Timing Challenges
Hardware Description Language describes hardware. It was quite challenging to grasp concurrent

programming intuition. It was also hard to think parallel. Timing error arised due to pre-release of
data output by a circuit which was less than the setup time.

Hming
Worst Megative Slack (WWNS): -18.233 ns
Total Megative Slack (TNS): -2287 537 ns

Mumber of Failing Endpoints: 128
Total Number of Endpoints: 1695

Implemented Timing Report

Figure 56: Timing error without pipeline of encryption/decryption

Timing Setup | Hold | Pulse Width
Worst Negative Slack (WNS): -2.818 ns

Total Negative Slack (TNS): -452.703 ns

Number of Failing Endpoints: 381

Total Mumber of Endpoints 2128

Implemented Timing Report

Figure 57: Timing error with pipeline of encryption/decryption: 2 circuits

Timing Setup | Hold | Pulse Width

Worst Negative Slack (WHNS): 218ns

Total Megative Slack (TNS): 0ns

Mumber of Failing Endpoints: 1]

Total Mumber of Endpoints: 2803

Implemented Timing Report +

Figure 58: Timing validation with pipeline of encryption/decryption with 5 circuits

Similarly, error occurred due to mis-matched receiver and transmitter. This is because with real time

communication, there is no storing of data and data are passed from registers to registers until it is
processed.

. Time management
Just as every other group project, it was tiresome to toggle schedules based on everyone’s need.

. Need Knowledge of Abstract Algebra

Strong knowledge of Abstract Algebra was required to implement the AES algorithm on hardware
level. Extra study on the subject material was required.
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13. Conclusion

The project was successful in realizing the objectives set at the very beginning. The FPGA Implementation of
AES 128 algorithm is capable of accepting and transmitting data, regardless of size, from either a computer or
another FPGA, perform encryption/decryption and communicate using the UART communication channel.
Its features and cost makes it well suited for any low cost embedded application in the field of data security.
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14. Verilog : Encryption(CODE)

14.1. encryption_main.v

module encryption_main(
clk,
data,
rx_state,
key,
encrypted_data,
encrypted_data_state
)3
input clk;
input rx_state;
input [0:127] key;
input [0:127] data;
output [0:127] encrypted_data;
output encrypted_data_state;

wire [0:127] key_O0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10;
key keygen(key,key_0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10);

main_encrypt encode(clk,data,rx_state,encrypted_data,encrypted_data_state,
key_O,key_l,key_2,key_3,key_4,key_5,key_6,key_?,key_8,key_9,key_lO);

endmodule

14.2. main_encrypt.v

“timescale 1ns / 1ps

module main_encrypt(
clk,
data,
rx_state,
encrypted_data,
encrypted_data_state,
key_0,key_1,key_2,key_3,key_4,
key_5,key_6,key_7,key_8,key_9,
key_10
)3

input clk,rx_state;

input [0:127] data;

output [0:127] encrypted_data;

output encrypted_data_state;

input [0:127] key_O,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10;

wire [0:127] encoded_data_1,encoded_data_2,encoded_data_3,encoded_data_4;
wire encoded_state_1, encoded_state_2, encoded_state_3, encoded_state_4;
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encrypt_first first(clk, data ,key_O,key_1,key_2,

rx_state ,encoded_data_1,encoded_state_1 )
encrypt_mid midl (clk,encoded_data_1,key_3,key_4 s
encoded_state_1,encoded_data_2,encoded_state_2 )
encrypt_mid mid2 (clk,encoded_data_2,key_5,key_6 ,
encoded_state_2,encoded_data_3,encoded_state_3 );
encrypt_mid mid3 (clk,encoded_data_3,key_7,key_8 ,
encoded_state_3,encoded_data_4,encoded_state_4 )

encrypt_final 1last (clk,encoded_data_4,key_9,key_10 s
encoded_state_4,encrypted_data,encrypted_data_state);

endmodule

14.3. encrypt_first.v

“timescale 1ns / 1ps
“timescale 1ns / 1ps

module encrypt_first(
clk,
data,
keyl,key2,key3,
data_state,
encoded_data,
encoded_state

)3
input [127:0] data,keyl,key2,key3;
input clk,data_state;
output [127:0]encoded_data;
output encoded_state;

//change these to change baud rate
parameter clock_speed=100000000;//speed of the FPGA clock
parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;

// number of clock cycles your hardware can afford per bit

//states
reg state=1'b0;//STATES
localparam init=1'b0,encode=1'bl;//states

reg [127:0] temp_encoded_data=0;
reg temp_encoded_state=0;;
reg[24:0] clock_counter=25'b0;//counts how many clock cycles passed

wire [127:0] tempered_datal,tempered_data2,tempered_data3;
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main_first DUM1(data,tempered_datal,keyl);
main_mid DUM2(tempered_datal,tempered_data2,key2);
main_mid DUM3(tempered_data2,tempered_data3,key3);

always@(posedge clk) begin
case (state)
init:
begin
if (clock_counter==clock_per_bit<<4)
begin
temp_encoded_state<=1'b0;
end
else
begin
clock_counter<=clock_counter+1;
end

if (data_state==1)
begin
clock_counter<=0;
state<=encode;
end
end
encode:
begin
if (clock_counter==clock_per_bit*159)
begin
temp_encoded_state<=1'bl;
temp_encoded_data<=tempered_data3;
clock_counter<=0;
state<=init;

end
else if(clock_counter==clock_per_bit<<4)
begin
temp_encoded_state<=1'b0;
clock_counter<=clock_counter+1;
end
else
begin
clock_counter<=clock_counter+1;

end

end
endcase
end
assign encoded_state=temp_encoded_state;
assign encoded_data=temp_encoded_data;
endmodule
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14.4. encrypt-mid.v

“timescale 1ns / 1ps
“timescale 1ns / 1ps

module encrypt_mid(
clk,
data,
keyl,key2,
data_state,
encoded_data,
encoded_state

)3
input [127:0] data,keyl,key2;
input clk,data_state;
output [127:0]encoded_data;
output encoded_state;

//change these to change baud rate
parameter clock_speed=100000000;//speed of the FPGA clock
parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;
// number of clock cycles your hardware can afford per bit

//states
reg state=1'b0;//STATES
localparam init=1'b0,encode=1'bl;//states

reg [127:0] temp_encoded_data=0;
reg temp_encoded_state=0;;
reg[24:0] clock_counter=25'b0;//counts how many clock cycles passed

wire [127:0] tempered_datal,tempered_data2;
main_mid  DUM1(data,tempered_datal,keyl);

main_mid DUM2 (tempered_datal,tempered_data2,key2) ;

always@(posedge clk) begin
case (state)

init:
begin
if (clock_counter==clock_per_bit<<4)
begin
temp_encoded_state<=1'b0;
end
else
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begin
clock_counter<=clock_counter+1;
end

if (data_state==1)

begin
clock_counter<=0;
state<=encode;

end

end

encode:

begin

if (clock_counter==clock_per_bit*159)

begin
temp_encoded_state<=1'b1l;
temp_encoded_data<=tempered_data2;
clock_counter<=0;
state<=init;

end

else if(clock_counter==clock_per_bit<<4)

begin
temp_encoded_state<=1'b0;
clock_counter<=clock_counter+1;

end

else

begin
clock_counter<=clock_counter+1;

end

end
endcase
end
assign encoded_state=temp_encoded_state;
assign encoded_data=temp_encoded_data;
endmodule

14.5. encrypt_final.v

“timescale 1ns / 1ps
“timescale 1ns / 1ps

module encrypt_final(
clk,
data,
keyl,key2,
data_state,
encoded_data,
encoded_state

)3
input [127:0] data,keyl,key2;
input clk,data_state;
output [127:0]encoded_data;
output encoded_state;

63



//change these to change baud rate
parameter clock_speed=100000000;//speed of the FPGA clock
parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;
// number of clock cycles your hardware can afford per bit

//states
reg state=1'b0;//STATES
localparam init=1'b0,encode=1'bl;//states

reg [127:0] temp_encoded_data=0;
reg temp_encoded_state=0;;
reg[24:0] clock_counter=25'b0;//counts how many clock cycles passed

wire [127:0] tempered_datal,tempered_data2;

main_mid DUM1(data,tempered_datal,keyl);
main_final DUM2(tempered_datal,tempered_data2,key2);

always@(posedge clk) begin
case (state)
init:
begin
if (clock_counter==clock_per_bit<<4)
begin
temp_encoded_state<=1'b0;
end
else
begin
clock_counter<=clock_counter+1;
end

if (data_state==1)
begin
clock_counter<=0;
state<=encode;
end
end
encode:
begin
if (clock_counter==clock_per_bit*159)
begin
temp_encoded_state<=1'bl;
temp_encoded_data<=tempered_data?2;
clock_counter<=0;
state<=init;
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endc
end

assi
assi

end
else if(clock_counter==clock_per_bit<<4)
begin
temp_encoded_state<=1'b0;
clock_counter<=clock_counter+1;
end
else
begin
clock_counter<=clock_counter+1;

end
end

ase

gn encoded_state=temp_encoded_state;
gn encoded_data=temp_encoded_data;

endmodule

14.6.

main_first.v

“timescale 1ns / 1ps

modu

le

main_first(
data,

temp
key_

inpu
outp
inpu

ered_data,

0

);

t [0:127] data;

ut [0:127] tempered_data;
t [0:127] key_O;

addRoundKey RFAK (data,key_O,tempered_data);
endmodule

14.7.

main_maid.v

“timescale 1ns / 1ps
module

main_mid/(

data,

tempered_data,

key

)

input [0:127] data;
output [0:127] tempered_data;
input [0:127] key;

wire
wire

[0:127] data_after_subs;
[0:127] data_after_mixcol;
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wire [0:127] data_after_shift;

substitution RiSB(data,data_after_subs);

shift_rows RiSR(data_after_subs,data_after_shift);
mix_col RiMC(data_after_shift,data_after_mixcol);
addRoundKey RiRK (data_after_mixcol,key,tempered_data);

endmodule

14.8. main_final.v

“timescale 1ns / 1ps
module
main_final(
data,
tempered_data,
key_10
)3
input [0:127] data;
output [0:127] tempered_data;
input [0:127] key_10;

wire [0:127] data_after_subs;
wire [0:127] data_after_shift;

substitution RFSB(data,data_after_subs);

shift_rows RFSR(data_after_subs,data_after_shift);
addRoundKey RFAk (data_after_shift,key_10,tempered_data);
endmodule

14.9. addRoundKey.v

“timescale 1ns / 1ps

module addRoundKey (
input [127:0] data,
input [127:0] key,
output [127:0] data_with_key
)3

assign data_with_key=data key;
endmodule

14.10. substitution.v

module substitution(
data,
substituted_data
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);
input [0:127] data;

output [0:127] substituted_data;

aes_S_box aes01(
aes_S_box aes02(
aes_S_box aes03(
aes_S_box aes04(
aes_S_box aes05(
aes_S_box aes06(
aes_S_box aes07(
aes_S_box aes08(
aes_S_box aes09(
aes_S_box aes10(
aes_S_box aes1i(
aes_S_box aes12(
aes_S_box aes13(
aes_S_box aes14(
aes_S_box aes15(
aes_S_box aesl6(
endmodule

14.11. aes_S_box.v

module aes_S_box(
data,
substituted_data
);

input [0:7] data;

data[000:007]
datal[008:015]
datal[016:
data[024:031]
data[032:039]
data[040:047]
data[048:055]
datal[056:
data[064:071]
data[072:079]
data[080:
data[088:
data[096:
datal[104:
data[112:119]
data[120:127]

023]

063]

87]
95]
103]
111]

substituted_data[000:
substituted_data[008:
substituted_datal[016:
substituted_datal[024:
substituted_data[032:
substituted_data[040:
substituted_data[048:
substituted_datal[056:
substituted_datal[064:
substituted_datal[072:
substituted_data[080:
substituted_data[088:
substituted_data[096:
substituted_data[104:
substituted_data[112:
substituted_data[120:

output reg [0:7] substituted_data;

reg [0:7] c;
always @(data)
begin
case(data)

8'h00:c =8'h63;8'h01:

8'h05:c =8'h6b;8'h06:
8'hOa:c =8'h67;8'h0b:
8'h0f:c =8'h76; //0

8'h10:c =8'hca;8'hl1:
8'h15:c =8'h59;8'h16:
8'hla:c =8'ha2;8'hlb:
8'hif:c =8'hc0; //1

8'h20:c =8'hb7;8'h21:
8'h25:c =8'h3f;8'h26:
8'h2a:c =8'he5;8'h2b:
8'h2f:c =8'h15; //2

8'h30:c =8'h04;8'h31:
8'h35:c =8'h96;8'h36:
8'h3a:c =8'h80;8'h3b:

=8'h7c;8'h02:c =8'h77;8'h03:c
=8'h6f;8'h07:c =8'hc5;8'h08:c
=8'h2b;8'hOc:c =8'hfe;8'h0d:c
=8'h82;8'h12:c =8'hc9;8'h13:c
=8'h47;8'h17:c =8'hf0;8'h18:c
=8'haf;8'hic:c =8'h9c;8'hld:c
=8'hfd;8'h22:c =8'h93;8'h23:c
=8'hf7;8'h27:c =8'hcc;8'h28:c
=8'hf1;8'h2c:c =8'h71;8'h2d:c
=8'hc7;8'h32:c =8'h23;8'h33:c
=8'h05;8'h37:c =8'h9a;8'h38:c
=8'he2;8'h3c:c =8'heb;8'h3d:c
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007]
015]
023]
031]
039]
047]
055]
063]
071]
079]
087]
095]
103]
111]
119]
127]

N NN NN N N N N N N N N

=8'h7b;8'h04:
=8'h30;8'h09:
=8'hd7;8'hOe:

=8'h7d;8'h14:
=8'had;8'h19:
=8'ha4;8'hle:

=8'h26;8'h24:
=8'h34;8'h29:
=8'hd8;8'h2e:

=8'hc3;8'h34:
=8'h07;8'h39:
=8'h27;8'h3e:

=8'hf2;
=8'h01;
=8'hab;

=8'hfa;
=8'hd4;
=8'h72;

=8'h36;
=8'hab;
=8'h31;

=8'h18;
=8'h12;
=8'hb2;



O o o0

=8'h75; //3

=8'h09;8'h41:c
=8'h6e;8'h46:c
=8'hd6;8'h4b:c

=8'h84; //4

=8'h53;8'h51:c
=8'hfc;8'hb6:c
=8'hbe;8'h5b:c

=8'hcf; //5

=8'hd0;8'h61:c
=8'h4d;8'h66:
=8'h02;8'h6b:c

=8'ha8; //6

=8'h51;8'h71:c
=8'h9d;8'h76:
=8'hda;8'h7b:c

=8'hd2; //7

=8'hcd;8'h81:c
=8'h97;8'h86:
=8'h7e;8'h8b:c

=8'h73; //8

8'h
8'h
8'h
8'h

db; //9

8
=8
=8

h79; //a

=8'he7;8'hbl:
=8'hd5;8'hb6:
=8'hf4;8'hbb:

=8'h08; //b

=8'hba;8'hcl:
=8'ha6;8'hc6:
=8'h74;8'hcb:

=8'h8a; //c

=8'h70;8'hd1:
=8'h03;8'hd6:
=8'h57;8" hdb:

=8'h9%e; //d

=8'hel;8'hel:
=8'hd9;8'heb:

60;8'h91:c
2a;8'h96:
b8;8'h9b:c

8'he0;8'hal:c
h06;8'hab:
hac;8'hab:c

=8'h83;8'h42:
=8'hb5a;8'h47:
=8'hb3;8'h4c:

=8'hd1;8'hb2:
=8'hb1;8'h57:
=8'h39;8'hbc:

=8'hef;8'h62:
=8'h33;8'h67:
=8'h7f;8'h6c:

=8'ha3;8'h72:
=8'h38;8'h77:
=8'h21;8'h7c:

=8'h0c;8'h82:
=8'h44;8'h87:
=8'h3d;8'h8c:

=8'hc8;8'hb2:
=8'h4e;8'hb7:
=8'hea;8'hbc:

=8'h78;8'hc2:
=8'hb4;8'hc7:
=8'h1f;8'hcc:

=8'h3e;8'hd2:
=8'hf6;8'hd7:
=8'hb9;8'hdc:

=8'hf8;8'he2:
=8'h8e;8'heT7:

8'h81;8'h92:
8'h90;8'h97:
8'h14;8'h9c:

8'h32;8'ha2:
8'h24;8'ha’:
8'h62;8'hac:

=8'h2c;8'h43:
=8'ha0;8'h48:
=8'h29;8'h4d:

=8'h00;8'h53:
=8'h5b;8'h58:
=8'h4a;8'hbd:

=8'haa;8'h63:
=8'h85;8'h68:
=8'h50;8'h6d:

=8'1h40;8'h73:
=8'hf5;8'h78:
=8'h10;8'h7d:

=8'h13;8'h83:
=8'h17;8'h88:
=8'h64;8'h8d:

=8'h4f;8'h93:
=8'h88;8'h98:
=8'hde;8'h9d:

=8'h37;8'hb3:
=8'ha9;8' hb8:
=8'h65;8" hbd:

=8'h25;8'hc3:
=8'hc6;8'hc8:
=8'h4b;8'hcd:

=8'hb5;8'hd3:
=8'hOe;8'hd8:
=8'h86;8' hdd:

=8'h98;8'he3:
=8'h94;8'he8:
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8'h3a;8'ha3:
8'h5c;8'ha8:
8'h91;8'had:

=8'hla;8'h44:
=8'h52;8'h49:
=8'he3;8'hde:

=8'hed;8'hb4:
=8'h6a;8'h59:
=8'h4c;8'hbe:

=8'hfb;8'h64:
=8'h45;8'h69:
=8'h3c;8'h6e:

=8'h8f;8'h74:
=8'hbc;8'h79:
=8'hff;8'h7e:

=8'hec;8'h84:
=8'hc4;8'h89:
=8'hbd;8'h8e:

=8'hdc;8'h9%4:
=8'h46;8'h99:
=8'hbe;8'h9%e:

=8'h6d;8'hb4:
=8'h6c;8'hb9:
=8'h7a;8'hbe:

=8'h2e;8'hc4:
=8'he8;8'hc9:
=8'hbd;8'hce:

=8'h66;8'hd4:
=8'h61;8'hd9:
=8'hc1;8'hde:

=8'h11;8'he4:
=8'h9b;8'he9:

8'h0a;8'ha4:
8'hc2;8'ha9:
8'h95;8'hae:

=8'h1lb;
=8'h3b;
=8'h2f;

=8'h20;
=8'hcb;
=8'h58;

=8'h43;
=8'hf9;
=8'h9f;

=8'h92;
=8'hb6;
=8'hf3;

=8'hb5f;
=8'ha7;
=8'h19;

=8'h22;
=8'hee;
=8'hOb;

=8'h49;
=8'hd3;
=8'he4;

=8'h8d;
=8'h56;
=8'hae;

=8'hlc;
=8'hdd;
=8'h8b;

=8'h48;
=8'h35;
=8'h1ld;

=8'h69;
=8'hle;



8'hea:c =8'h87;8'heb:c =8'he9;8'hec:c =8'hce;8'hed:c

8'hef:c =8'hdf; //e

8'hf0:c =8'h8c;8'hfl:c =8'hal;8'hf2:c =8'h89;8'hf3:c
8'hfb:c =8'he6;8'hf6:c =8'h42;8'hf7:c =8'h68;8'hf8:c
8'hfa:c =8'h2d;8'hfb:c =8'h0f;8'hfc:c =8'hb0;8'hfd:c
8'hff:c =8'h16; //f

endcase

end

assign substituted_data=c;

endmodule

14.12. shift_rows.v

“timescale 1ns / 1ps

module shift_rows(
sub_data,

data_in

);

input [0:127] sub_data;
output [0:127] data_in;

7

1;

111 1,
. 87
: 63

: 39

15

1;
1;

1;
1;

119 1;
: 95

71

: 47
: 23
127 1;

79

1;

1;
1;
1;

103 1;

: bb
: 31

assign data_in[ 0 : 7 ] = sub_datal O
assign data_in[ 8 : 15 ] = sub_datal 104 :
assign data_in[ 16 : 23 ] = sub_datal[ 80
assign data_in[ 24 : 31 ] = sub_datal[ 53
assign data_in[ 32 : 39 ] = sub_datal 32
assign data_in[ 40 : 47 ] = sub_datal 8 :
assign data_in[ 48 : 55 ] = sub_datal 112 :
assign data_in[ 56 : 63 ] = sub_datal[ 88
assign data_in[ 64 : 71 ] = sub_datal 64
assign data_in[ 72 : 79 ] = sub_datal[ 40
assign data_in[ 80 : 87 ] = sub_datal 16
assign data_in[ 88 : 95 ] = sub_datal 120 :
assign data_in[ 96 : 103 ] = sub_datal 96
assign data_in[ 104 : 111 ] = sub_datal 72
assign data_in[ 112 : 119 ] = sub_datal 48
assign data_in[ 120 : 127 ] = sub_datal[ 24

endmodule

14.13. miz_col.v

“timescale 1ns / 1ps

69

1;
1;
1;

=8'hb5;8'hee:

=8'h0d;8'hf4:
=8'h41;8'hf9:
=8'hb4;8'hfe:

[¢]

C
C
C

=8'h28;

=8'hbf;
=8'h99;
=8'hbb;



module mix_col(

data_in,

mix_data

);

input [0:127] data_in;

output [0:127] mix_data;

GF_2_8_multiplier COL1(data_in[0:7],data_in[8:15],data_in[16:23],data_in[24:31],
mix_datal[0:7],mix_data[8:15] ,mix_data[16:23] ,mix_data[24:31]);

GF_2_8_multiplier COL2(data_in[32:39],data_in[40:47],data_in[48:55],data_in[56:63],
mix_data[32:39] ,mix_datal[40:47] ,mix_data[48:55] ,mix_data[56:63]);

GF_2_8_multiplier COL3(data_in[64:71],data_in[72:79],data_in[80:87],data_in[88:95],
mix_datal[64:71] ,mix_data[72:79] ,mix_data[80:87] ,mix_data[88:95]);

GF_2_8_multiplier COL4(data_in[96:103],data_in[104:111],data_in[112:119],
data_in[120:127] ,mix_data[96:103] ,mix_data[104:111],
mix_datal[112:119] ,mix_data[120:127]1);

endmodule

14.14. GF_2_8multiplier.v

“timescale 1ns / 1ps

module GF_2_8_multiplier(
datal,

data2,

data3,

data4,

multiplied_datal,
multiplied_data2,
multiplied_data3,
multiplied_data4

)3

input [7:0] datal,data2,data3,data4;
output [7:0] multiplied_datal, multiplied_data2, multiplied_data3, multiplied_data4;
/*Multiplication Matriz for Miz Col
/02 03 01 01/ /datall
/[o1 02 03 01/ /data2/
output= [01 01 02 03] * [data3/
/03 01 01 02/ [|data4/
*/
assign multiplied_datal=
multiply_02(datal) "multiply_03(data2) ‘multiply_O1(data3) multiply_01(data4);

assign multiplied_data2=
multiply_O1(datal) "multiply_02(data2) multiply_03(data3) multiply_01(data4);

assign multiplied_data3=
multiply_O1(datal) "multiply_01(data2) ‘multiply_02(data3) multiply_03(data4);
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assign multiplied_data4=
multiply_03(datal) ‘multiply_01(data2) multiply_01(data3) multiply_02(data4) ;

function [7:0] multiply_O1(input [7:0]a);
begin
multiply_Ol=a;
end
endfunction
function [7:0] multiply_02(input [7:0]a);
begin
if (al[7]==0) begin
multiply_02=a<<1;
end else begin
multiply_02=(a<<1)"8'b00011011;
end
end
endfunction

function [7:0] multiply_03(input [7:0]a);
reg [7:0]temp;
begin
temp=multiply_02(a);
multiply_O3=temp~a;
end

endfunction

endmodule

15. Verilog : Decryption(CODE)

15.1. decryption_main.v

“timescale 1ns / 1ps

module decryption_main(
clk,
data,
rx_state,
key,
decrypted_data,
decrypted_data_state
)3
input clk;
input rx_state;
input [0:127] key;
input [0:127] data;
output [0:127] decrypted_data;
output decrypted_data_state;

wire [0:127] key_O,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10;
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key keygen(key,key_0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10);

inverse_main_decrypt decode(clk,data,rx_state,decrypted_data,decrypted_data_state,
key_0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10);

endmodule

15.2. inverse_main_decrypt.v

“timescale 1ns / 1ps

module inverse_main_decrypt(
clk,
data,
rx_state,
decrypted_data,
decrypted_data_state,
key_0,key_1,key_2,key_3,key_4,
key_5,key_6,key_7,key_8,key_9,
key_10
)3

input clk,rx_state;

input [0:127] data;

output [0:127] decrypted_data;

output decrypted_data_state;

input [0:127] key_O,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10;

wire [0:127] key[0:10];
wire [0:127] encoded_data_1,encoded_data_2,encoded_data_3,encoded_data_4;
wire encoded_state_1, encoded_state_2, encoded_state_3, encoded_state_4;

decrypt_first first(clk,data,key_10,key_9,
rx_state,encoded_data_1,encoded_state_1);
decrypt_mid midl(clk,encoded_data_1,key_8,key_7,
encoded_state_1,encoded_data_2,encoded_state_2);
decrypt_mid mid2(clk,encoded_data_2,key_6,key_5,
encoded_state_2,encoded_data_3,encoded_state_3);
decrypt_mid mid3(clk,encoded_data_3,key_4,key_3,
encoded_state_3,encoded_data_4,encoded_state_4);
decrypt_final 1last(clk,encoded_data_4,key_2,key_1,key_O,
encoded_state_4,decrypted_data,decrypted_data_state) ;

endmodule
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15.8. decrypt_first.v

“timescale 1ns / 1ps

“timescale 1ns / 1ps

module decrypt_first(
clk,
data,
keyl,key2,
data_state,
encoded_data,
encoded_state

);
input [127:0] data,keyl,key2;
input clk,data_state;
output [127:0]encoded_data;
output encoded_state;

//change these to change baud rate
parameter clock_speed=100000000;//speed of the FPGA clock
parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;
// number of clock cycles your hardware can afford per bit

//states
reg state=1'b0;//STATES
localparam init=1'b0,encode=1'bl;//states

reg [127:0] temp_encoded_data=0;
reg temp_encoded_state=0;;
reg[24:0] clock_counter=25'b0;//counts how many clock cycles passed

wire [127:0] tempered_datal,tempered_data2;

inverse_main_first DUM1(data,tempered_datal,keyl);
inverse_main_mid DUM2 (tempered_datal,tempered_data2,key2) ;

always@(posedge clk) begin
case (state)
init:
begin
if (clock_counter==clock_per_bit<<4)
begin
temp_encoded_state<=1'b0;
end
else
begin
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clock_counter<=clock_counter+1;
end

if (data_state==1)

begin
clock_counter<=0;
state<=encode;

end

end

encode:

begin

if (clock_counter==clock_per_bit*159)

begin
temp_encoded_state<=1'b1l;
temp_encoded_data<=tempered_data2;
clock_counter<=0;
state<=init;

end

else if(clock_counter==clock_per_bit<<4)

begin
temp_encoded_state<=1'b0;
clock_counter<=clock_counter+1;

end

else

begin
clock_counter<=clock_counter+1;

end

end
endcase
end
assign encoded_state=temp_encoded_state;
assign encoded_data=temp_encoded_data;
endmodule

15.4. decrypt-mid.v

“timescale 1ns / 1ps
“timescale 1ns / 1ps

module decrypt_mid(
clk,
data,
keyl,key2,
data_state,
encoded_data,
encoded_state

)3
input [127:0] data,keyl,key2;
input clk,data_state;
output [127:0]encoded_data;
output encoded_state;
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//change these to change baud rate
parameter clock_speed=100000000;//speed of the FPGA clock
parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;
// number of clock cycles your hardware can afford per bit

//states
reg state=1'b0;//STATES
localparam init=1'b0,encode=1'bl;//states

reg [127:0] temp_encoded_data=0;
reg temp_encoded_state=0;;
reg[24:0] clock_counter=25'b0;//counts how many clock cycles passed

wire [127:0] tempered_datal,tempered_data2;

inverse_main_mid DUM1(data,tempered_datal,keyl);
inverse_main_mid DUM2 (tempered_datal,tempered_data2,key2) ;

always@(posedge clk) begin
case (state)
init:
begin
if (clock_counter==clock_per_bit<<4)
begin
temp_encoded_state<=1'b0;
end
else
begin
clock_counter<=clock_counter+1;
end

if (data_state==1)
begin
clock_counter<=0;
state<=encode;
end
end
encode:
begin
if (clock_counter==clock_per_bit*159)
begin
temp_encoded_state<=1'bl;
temp_encoded_data<=tempered_data?2;
clock_counter<=0;
state<=init;
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end
else if(clock_counter==clock_per_bit<<4)
begin
temp_encoded_state<=1'b0;
clock_counter<=clock_counter+1;
end
else
begin
clock_counter<=clock_counter+1;

end

end
endcase
end
assign encoded_state=temp_encoded_state;
assign encoded_data=temp_encoded_data;
endmodule

15.5. decrypt_final.v

“timescale 1ns / 1ps
“timescale 1ns / 1ps

module decrypt_final(
clk,
data,
keyl,key2,key3,
data_state,
encoded_data,
encoded_state

);
input [127:0] data,keyl,key2,key3;
input clk,data_state;
output [127:0]encoded_data;
output encoded_state;

//change these to change baud rate
parameter clock_speed=100000000;//speed of the FPGA clock
parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;
// number of clock cycles your hardware can afford per btit

//states
reg state=1'b0;//STATES
localparam init=1'b0,encode=1'bl;//states

reg [127:0] temp_encoded_data=0;

reg temp_encoded_state=0;;
reg[24:0] clock_counter=25'b0;//counts how many clock cycles passed
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wire [127:0] tempered_datal,tempered_data2,tempered_data3;

inverse_main_mid DUM1(data,tempered_datal,keyl);
inverse_main_mid DUM2 (tempered_datal,tempered_data2,key2) ;
inverse_main_final DUM3(tempered_data2,tempered_data3,key3);

always@(posedge clk) begin
case (state)
init:
begin
if (clock_counter==clock_per_bit<<4)
begin
temp_encoded_state<=1'b0;
end
else
begin
clock_counter<=clock_counter+1;
end

if (data_state==1)
begin
clock_counter<=0;
state<=encode;
end
end
encode:
begin
if (clock_counter==clock_per_bit*159)
begin
temp_encoded_state<=1'b1l;
temp_encoded_data<=tempered_data3;
clock_counter<=0;
state<=init;

end
else if(clock_counter==clock_per_bit<<4)
begin
temp_encoded_state<=1'b0;
clock_counter<=clock_counter+1;
end
else
begin
clock_counter<=clock_counter+1;

end

end
endcase
end
assign encoded_state=temp_encoded_state;
assign encoded_data=temp_encoded_data;
endmodule
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15.6. inverse_main_first.v

“timescale 1ns / 1ps

module
inverse_main_first(
data,
tempered_data,
key_10

);

input [0:127] data;
output [0:127] tempered_data;
input [0:127] key_10;

wire [0:127] data_with_key;
wire [0:127] data_after_shift;

addRoundKey RFAK (data,key_10,data_with_key);
inv_shift_rows RFSR (data_with_key,data_after_shift);
inv_substitution RFSB (data_after_shift,tempered_data);
endmodule

15.7. tnverse_-main_maid.v

“timescale 1ns / 1ps

module
inverse_main_mid(
data,
tempered_data,
key

);

input [0:127] data;
output [0:127] tempered_data;
input [0:127] key;

wire [0:127] data_with_key;
wire [0:127] data_after_mixcol;
wire [0:127] data_after_shift;

addRoundKey RiAk(data,key,data_with_key) ;
inverse_mixcol RiMC(data_with_key,data_after_mixcol);
inv_shift_rows RiSR(data_after_mixcol,data_after_shift);
inv_substitution RiSB(data_after_shift,tempered_data);

endmodule
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15.8. inverse_main_final.v

“timescale 1ns / 1ps

module
inverse_main_final(
data,
tempered_data,
key_0

);
input [0:127] data;

output [0:127] tempered_data;
input [0:127] key_O;

addRoundKey RFAK (data,key_O,tempered_data);

endmodule

15.9. addRoundKey.v

“timescale 1ns / 1ps

module addRoundKey (

input [127:0] data,

input [127:0] key,
output [127:0] data_with_key

)

assign data_with_key=data“key;

endmodule

15.10. Inv_substitution.v

module inv_substitution(

mixcol_data,

inv_substituted_data

)

input [0:127] mixcol_data;
output [0:127] inv_substituted_data;

aes_invS_box
aes_invS_box
aes_invS_box
aes_invS_box
aes_invS_box
aes_invS_box
aes_invS_box
aes_invS_box
aes_invS_box
aes_invS_box
aes_invS_box
aes_invS_box
aes_invS_box

invaes01(
invaes02(
invaes03(
invaes04(
invaes05(
invaes06(
invaes07(
invaes08(
invaes09(
invaes10(
invaes11(
invaes12(
invaes13(

mixcol_data[000:
mixcol_datal[008:
mixcol_data[016:
mixcol_data[024:
mixcol_data[032:
mixcol_data[040:
mixcol_data[048:
mixcol_data[056:
mixcol_data[064:
mixcol_data[072:
mixcol_data[080:
mixcol_data[088:
mixcol_datal[096:

007]
015]
023]
031]
039]
047]
055]
063]
071]
079]

87]

95]
103]
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inv_substituted_datal[000:
inv_substituted_data[008:
inv_substituted_datal[016:
inv_substituted_datal[024:
inv_substituted_data[032:
inv_substituted_datal[040:
inv_substituted_datal[048:
inv_substituted_datal[056:
inv_substituted_datal[064:
inv_substituted_datal[072:
inv_substituted_datal[080:
inv_substituted_datal[088:
inv_substituted_data[096:

0071
015]
023]
031]
039]
047]
055]
063]
071]
079]
0871
095]
103]
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, inv_substituted_datal[104:111] );
, inv_substituted_datal[112:119] );
, inv_substituted_datal[120:127] );

aes_invS_box invaes14( mixcol_data[104:111]
aes_invS_box invaes15( mixcol_datal[112:119]
aes_invS_box invaes16( mixcol_data[120:127]
endmodule

15.11. aes_invS_box.v

module aes_invS_box(
mixcol_data,
inv_substituted_data

)

input [0:7] mixcol_data;
output reg [0:7] inv_substituted_data;

reg [0:7] c;

always @(mixcol_data)

begin

case(mixcol_data)

8'h63:c =8'h00;8'h7c:c =8'h01;8'h77:c =8'h02;8'h7b:c =8'h03;
8'hf2:c =8'h04;8'h6b:c =8'h05;8'h6f:c =8'h06;8'hcb:c =8'h07;
8'h30:c =8'h08;8'h01:c =8'h09;8'h67:c =8'h0a;8'h2b:c =8'hOb;
8'hfe:c =8'h0c;8'hd7:c =8'h0d;8'hab:c =8'h0e;8'h76:c =8'h0f; //0
8'hca:c =8'h10;8'h82:¢c =8'h11;8'hc9:c =8'h12;8'h7d:c =8'h13;
8'hfa:c =8'h14;8'hb59:c =8'h15;8'h47:c =8'h16;8'hf0:c =8'h17;
8'had:c =8'h18;8'hd4:c =8'h19;8'ha2:c =8'hla;8'haf:c =8'hlb;
8'h9c:c =8'hic;8'had:c =8'h1d;8'h72:c =8'hle;8'hc0O:c =8'hi1f; //1
8'hb7:c =8'h20;8'hfd:c =8'h21;8'h93:c =8'h22;8'h26:c =8'h23;
8'h36:c =8'h24;8'h3f:c =8'h25;8'hf7:c =8'h26;8'hcc:c =8'h27;
8'h34:c =8'h28;8'hab:c =8'h29;8'heb:c =8'h2a;8'hfl:c =8'h2b;
8'h71:c =8'h2c;8'hd8:c =8'h2d;8'h31:c =8'h2e;8'h15:¢c =8'h2f; //2
8'h04:c =8'h30;8'hc7:c =8'h31;8'h23:¢c =8'h32;8'hc3:c =8'h33;
8'h18:c =8'h34;8'h96:c =8'h35;8'h05:c =8'h36;8'h9a:c =8'h37;
8'h07:c =8'h38;8'h12:c =8'h39;8'h80:c =8'h3a;8'he2:c =8'h3b;
8'heb:c =8'h3c;8'h27:c =8'h3d;8'hb2:c =8'h3e;8'h75:c =8'h3f; //3
8'h09:c =8'h40;8'h83:c =8'h41;8'h2c:c =8'h42;8'hla:c =8'h43;
8'hlb:c =8'h44;8'h6e:c =8'h45;8'hba:c =8'h46;8'hal:c =8'h47;
8'hb52:c =8'h48;8'h3b:c =8'h49;8'hd6:c =8'h4a;8'hb3:c =8'h4b;
8'h29:c =8'h4c;8'he3:c =8'h4d;8'h2f:c =8'hde;8'h84:c =8'h4f; //4
8'h53:c =8'h50;8'hdl:c =8'h51;8'h00:c =8'h52;8'hed:c =8'h53;
8'h20:c =8'hb4;8'hfc:c =8'h55;8'hbl:c =8'h56;8'hbb:c =8'h57;
8'h6a:c =8'h58;8'hcb:c =8'h59;8'hbe:c =8'h5a;8'h39:c =8'hb5b;
8'h4a:c =8'h5c;8'hd4c:c =8'h5d;8'h58:¢c =8'hb5e;8'hcf:c =8'h5f; //5
8'hd0:c =8'h60;8'hef:c =8'h61;8'haa:c =8'h62;8'hfb:c =8'h63;
8'h43:c =8'h64;8'h4d:c =8'h65;8'h33:c =8'h66;8'h85:c =8'h67;
8'h45:c =8'h68;8'hf9:c =8'h69;8'h02:c =8'h6a;8'h7f:c =8'h6b;
8'h50:c =8'h6c;8'h3c:c =8'h6d;8'h9f:c =8'h6e;8'ha8:c =8'h6f; //6
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8'hb1:
8'h92:
8'hbc:
8'h10:

o o o o0

8'hcd:c
8'hbf:c
8'hc4d:c
8'h64:c

8'h60:c
8'h22:c
8'h46:c
8'hde:c

8'heO:
8'h49:
8'hc2:
8'h91:

8'heT:
8'h8d:
8'h6¢:
8'h65:

8'hba:
8'hilc:
8'he8:
8'h4db:

8'h70:
8'h48:
8'h61:
8'h86:

8'hel:c
8'h69:c
8'h9b:c
8'hce:c

8'h8c:c
8'hbf:c
8'hdl:c
8'hb0:c
endcase
end

8l
8’
8!
8!

=8'h80;8"'h0c:
=8'h84;8'h97:
=8'h88;8'ha7:
=8'h8c;8'hbd:

=8'h90;8'h81:
=8'h94;8'h2a:
=8'h98;8'hee:
=8'h9c;8'hbe:

=8'ha0;8'h32:
=8'ha4;8'h06:
=8'ha8;8'hd3:
=8'hac;8'h95:

=8'hb0;8'hc8:
=8'hb4;8'hd5:
=8'hb8;8'hb56:
=8'hbc;8'h7a:

=8'hc0;8'h78:
=8'hc4;8'hab:
=8'hc8;8'hdd:
=8'hcc;8'hbd:

=8'hd0;8'h3e:
=8'hd4;8'h03:
=8'hd8;8'h35:
=8'hdc;8'hcl:

=8'he0;8'hf8:
=8'he4;8'hd9:
=8'he8;8'hle:
=8'hec;8'hb5:

h70;8'ha3:
h74;8'hod:
h78;8'hb6:
h7c;8'hff:

8'hf0;8'hal:
=8'hf4;8'heb:
=8'hf8;8'h99:
=8'hfc;8'hb4:

O o o o0

O o0 o0

8I
8’
8[
8I

=8'h81;8'h13:
=8'h85;8'h44:
=8'h89;8'h7e:
=8'h8d;8'h19:

=8'h91;8'h4f:
=8'h95;8'h90:
=8'h99;8'hb8:
=8'h9d;8'h0b:

=8'hal;8'h3a:
=8'hab;8'h24:
=8'ha9;8'hac:
=8'had;8'he4:

=8'hb1;8'h37:
=8'hb5;8'hde:
=8'hb9;8'hf4:
=8'hbd;8'hae:

=8'hc1;8'h25:
=8'hc5;8'hb4:
=8'hc9;8'h74:
=8'hcd;8'h8b:

=8'hd1;8'hb5:
=8'hd5;8'hf6:
=8'hd9;8'h57:
=8'hdd;8'hld:

=8'hel;8'h98:
=8'heb;8'h8e:
=8'he9;8'h87:
=8'hed;8'h28:

8I
8I
8I
8I

assign inv_substituted_data=c;
endmodule

15.12. tnv_shift_rows.v

module inv_shift_rows(

inv_sub_

data,

h71;8'h40:
h75;8'h38:
h79;8'hda:
h7d4;8'hf3:

hf1;8'h89:
hf5;8'h42:
hf9;8'h2d:
hfd;8'hbb:

o o o o0

8|
8|
8I
8I

=8'h82;8'hec:
=8'h86;8'h17:
=8'h8a;8'h3d:
=8'h8e;8'h73:

=8'h92;8'hdc:
=8'h96;8'h88:
=8'h9a;8'h14:
=8'h9%e;8'hdb:

=8'ha2;8'h0a:
=8'ha6;8'hbc:
=8'haa;8'h62:
=8'hae;8'h79:

=8'hb2;8'h6d:
=8'hb6;8'ha9:
=8'hba;8'hea:
=8'hbe;8'h08:

=8'hc2;8'h2e:
=8'hc6;8'hc6:
=8'hca;8'hlf:
=8'hce;8'h8a:

=8'hd2;8'h66:
=8'hd6;8'hOe:
=8'hda;8'hb9:
=8'hde;8'h9%e:

=8'he2;8'h11:
=8'he6;8'h94:
=8'hea;8'he9:
=8'hee;8'hdf:

=8'hf2;8'h0d:
=8'hf6;8'h68:
=8'hfa;8'h0f:
=8'hfe;8'h16:
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h72;8'h8f:
h76;8'hf5:
h7a;8'h21:
h7e;8'hd2:

O o0 o0 o o0 o0 o0

O o0 oo

=8'h73;
=8'hT77;
=8'h7b;
=8'hT7f;

=8'h83;
=8'h87;
=8'h8b;
=8'h8f;

=8'h93;
=8'h97;
=8'h9b;
=8'h9f;

=8'ha3;
=8'ha7;
=8'hab;
=8'haf;

=8'hb3;
=8'hb7;
=8'hbb;
=8'hbf;

=8'hc3;
=8'hc7;
=8'hcb;
=8'hcft;

=8'hd3;
=8'hd7;
=8'hdb;
=8'hdf;

=8'he3;
=8'he7;
=8'heb;
=8'hef;

=8'hf3;
=8'hf7;
=8'hfb;
=8'hff;

/77

//8

/79

//a

//b

//c

//d

//e

//f



data_in

)3

input [0:127] inv_sub_data;

output [0:127] data_in;

assign data_in[ O 7 ] inv_sub_datal O 7 1;
assign data_in[ 8 15 ] inv_sub_datal 40 : 47 ];
assign data_in[ 16 : 23 ] = inv_sub_datal 80 : 87 1;
assign data_in[ 24 : 31 ] inv_sub_datal 120 : 127 1;
assign data_in[ 32 : 39 ] inv_sub_datal[ 32 39 1;
assign data_in[ 40 : 47 ] inv_sub_datal 72 79 1;
assign data_in[ 48 : 55 ] inv_sub_datal 112 : 119 1;
assign data_in[ 56 : 63 ] = inv_sub_datal 24 : 31 1;
assign data_in[ 64 : 71 ] inv_sub_datal 64 : 71 1;
assign data_in[ 72 : 79 ] inv_sub_datal 104 : 111 1;
assign data_in[ 80 : 87 1] inv_sub_datal 16 : 23 1;
assign data_in[ 88 : 95 ] = inv_sub_datal 56 : 63 ];
assign data_in[ 96 : 103 ] inv_sub_datal[ 96 103 1;
assign data_in[ 104 : 111 ] inv_sub_datal 8 15 1;
assign data_in[ 112 : 119 ] = inv_sub_datal[ 48 55 1;
assign data_in[ 120 : 127 ] = inv_sub_datal[ 88 95 1;
endmodule

15.18. inverse_mix_col.v

“timescale 1ns / 1ps

module inverse_mixcol(

data_in,

inverse_mixdata

);

input [0:127] data_in;

output [0:127] inverse_mixdata;

inv_GF_2_8_multiplier COL1(data_in[0:7],data_in[8:15],data_in[16:23],
data_in[24:31],
inverse_mixdata[0:7],inverse_mixdatal[8:15],inverse_mixdatal[16:23],
inverse_mixdatal[24:31]);

inv_GF_2_8_multiplier COL2(data_in[32:39],data_in[40:47],data_in[48:55],
data_in[56:63],

inverse_mixdata[32:39],inverse_mixdata[40:47] ,inverse_mixdata[48:55],
inverse_mixdatal[56:63]);

inv_GF_2_8_multiplier COL3(data_in[64:71],data_in[72:79],data_in[80:87],
data_in[88:95],

inverse_mixdatal[64:71] ,inverse_mixdatal[72:79],inverse_mixdata[80:87],
inverse_mixdata[88:95]);
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inv_GF_2_8_multiplier COL4(data_in[96:103],data_in[104:111],data_in[112:119],
data_in[120:127],
inverse_mixdata[96:103],inverse_mixdata[104:111],inverse_mixdata[112:119],
inverse_mixdatal[120:127]);

endmodule

15.14. mmv_GF_2_8 multiplier.v

“timescale 1ns / 1ps

module inv_GF_2_8_multiplier(
datal,

data2,

data3,

data4,

multiplied_datal,
multiplied_data2,
multiplied_data3,
multiplied_data4,

)3

input [7:0] datal,data2,data3,data4;
output [7:0] multiplied_datal, multiplied_data2, multiplied_data3, multiplied_data4;
/*Multiplication Matriz for Miz Col

[OE 0B 0D 09/ [|datall

/109 OE 0B 0D| |data2/
output= [0OD 09 OE OB| * [data3/

/0B 0D 09 OE| |data4/
*/
assign multiplied_datal=
multiply_OE(datal) "multiply_OB(data2) multiply_OD(data3) multiply_09(data4);
assign multiplied_data2=
multiply_09(datal) "multiply_OE(data2) ‘multiply_OB(data3) multiply_OD(data4);
assign multiplied_data3=
multiply_OD(datal) "multiply_09(data2) ‘multiply_OE(data3) multiply_OB(data4);
assign multiplied_datad4=
multiply_OB(datal) "multiply_OD(data2) ‘multiply_09(data3) multiply_OE(data4);

function [7:0] multiply_09(input [7:0]a);
begin
multiply_09=(multiply_02(multiply_02(multiply_02(a)))" a);
end

endfunction

function [7:0] multiply_OB(input [7:0]a);
begin
multiply_OB=(multiply_02(multiply_02(multiply_02(a)) ~a) a);
end

endfunction

function [7:0] multiply_OD(input [7:0]a);
begin
multiply_OD=(multiply_02(multiply_02((multiply_02(a)~a)))"a);
end
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endfunction

function [7:0] multiply_OE(input [7:0]a);
begin
multiply_OE=multiply_02(multiply_02(multiply_02(a) a) a);
end

endfunction

function [7:0] multiply_O1(input [7:0]a);
begin
multiply_Ol=a;
end
endfunction
function [7:0] multiply_O2(input [7:0]a);
begin
if (a[7]==0) begin
multiply_02=a<<1;
end else begin
multiply_02=(a<<1)"8'b00011011;
end
end
endfunction

function [7:0] multiply_03(input [7:0]a);
reg [7:0]temp;
begin
temp=multiply_02(a);
multiply_O3=temp~a;
end

endfunction

endmodule

16. Verilog : Key Expansion(CODE)

16.1. key.v

“timescale 1ns / 1ps

module key( key_in,key_0,key_1,key_2,key_3,key_4,key_5,key_6,key_7,key_8,key_9,key_10);

input [127:0] key_in;
output [127:0] key_O;
output [127:0] key_1;
output [127:0] key_2;
output [127:0] key_3;
output [127:0] key_4;
output [127:0] key_5;
output [127:0] key_6;
output [127:0] key_7;
output [127:0] key_8;
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output [127:0] key_9;

output [127:0] key_10;

wire [127:0] key_bus [0:10];

wire [39:0] select_i;

assign key_bus[0] = key_in;
assign select_i = 40'h9876543210;

genvar 1ij;

generate

for( i=0; i<10; i= i+1) begin

aes_key_expand_128 kO(

.select_i(select_i[4*(i+1)-1 : 4x*i]),.key(key_bus[i]), .key_out(key_bus[i+1]));

end

endgenerate

assign key_0 = key_bus[0];
assign key_1 = key_bus[1];
assign key_2 = key_bus[2];
assign key_3 = key_bus[3];
assign key_4 = key_bus[4];
assign key_5 = key_bus[5];
assign key_6 = key_bus[6];
assign key_7 = key_bus[7];
assign key_8 = key_bus[8];
assign key_9 = key_bus[9];
assign key_10 = key_bus[10];

endmodule

16.2. key_expand.v

“timescale 1ns / 1ps

module aes_key_expand_128( select_i, key, key_out);

input [3:0] select_ij;
input [127:0] key;
output [127:0] key_out;

wire [31:0] w[3:0];
wire [31:0] tmp_w;
wire [31:0] subword;
wire [31:0] rcon;

wire [31:0] a,b,c,d;
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assign w[0] key[127:096] ;

assign w[1] = key[095:064];

assign w[2] key [063:032] ;

assign w[3] = key[031:000] ;

assign a = w[0] “subword rcon;

assign b = w[0] w[1] subword rcon;

assign ¢ = wl[0] w[2] w[1] “subword rcon;

assign d = w[0] w[3] w[2] w[1] subword rcon;

assign tmp_w = w[3];

aes_sbox u0( .a(tmp_w([23:16]), .d(subword[31:24]));
aes_sbox ui( .a(tmp_w([15:08]), .d(subword[23:16]));
aes_sbox u2( .a(tmp_w[07:00]), .d(subword[15:08]));
aes_sbox u3( .a(tmp_w([31:24]), .d(subword[07:00]));
aes_rcon r0O( .select_i(select_i), .out(rcon));

assign key_out ={a,b,c,d};

endmodule

16.3. aes_sbox.v

“timescale 1ns / 1ps

module aes_sbox(a,d);

input [7:0] a;
output [7:0] d;
reg [7:0] d;

always @(a)
case(a)

8'h00: d=8'h63;8'h01: d=8'h7c;8'h02: d=8'h77;8'h03: d=8'h7b;8'h04: d=8'hf2;
8'h05: d=8'h6b;8'h06: d=8'h6f;8'h07: d=8'hc5;8'h08: d=8'h30;8'h09: d=8'h01;
8'h0a: d=8'h67;8'hOb: d=8'h2b;8'hOc: d=8'hfe;8'h0d: d=8'hd7;8'hOe: d=8'hab;
8'h0f: d=8'h76;8'h10: d=8'hca;8'h1l: d=8'h82;8'h12: d=8'hc9;8'h13: d=8'h7d;
8'hl4: d=8'hfa;8'h15: d=8'h59;8'h16: d=8'h47;8'h17: d=8'hf0;8'h18: d=8'had;
8'h19: d=8'hd4;8'hla: d=8'ha2;8'hlb: d=8'haf;8'hlc: d=8'h9c;8'hld: d=8'ha4;
8'hle: d=8'h72;8'h1f: d=8'hc0;8'h20: d=8'hb7;8'h21: d=8'hfd;8'h22: d=8'h93;
8'h23: d=8'h26;8'h24: d=8'h36;8'h25: d=8'h3f;8'h26: d=8'hf7;8'h27: d=8'hcc;
8'h28: d=8'h34;8'h29: d=8'ha5;8'h2a: d=8'he5;8'h2b: d=8'hf1;8'h2c: d=8'h71;
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8'h2d: d=8'hd8;8'h2e: d=8'h31;8'h2f: d= 15;8'h30: d=8'h04;8'h31: d=8'hcT7;
8'h32: d=8'h23;8'h33: d=8'hc3;8'h34: d= 18;8'h35: d=8'h96;8'h36: d=8'h05;
8'h37: d=8'h9a;8'h38: d=8'h07;8'h39: d= 12;8'h3a: d=8'h80;8'h3b: d=8'he2;
8'h3c: d=8'heb;8'h3d: d=8'h27;8'h3e =8'hb2;8'h3f: d=8'h75;8'h40: d=8'h09;
8'h41: d=8'h83;8'h42: d=8'h2c;8'h43: d= 1a;8'h44: d=8'h1b;8'h45: d=8'h6e;
8'h46: d=8'hb5a;8'h47: d=8'ha0;8'h48: d= 52;8'h49: d=8'h3b;8'h4a: d=8'hd6;
8'h4b: d=8'hb3;8'h4c: d=8'h29;8'h4d: d= 3;8'hde: d=8'h2f;8'h4f: d=8'h84;
8'h50: d=8'hb53;8'hb1: d=8'hd1;8'hb2: d= 00;8'h53: d=8'hed;8'hb4: d=8'h20;
8'h55: d=8'hfc;8'h56: d=8'hb1;8'h57: d= 5b;8'h58: d=8'h6a;8'h59: d=8'hcb;
8'hba: d=8'hbe;8'hbb: d=8'h39;8'h5c: d=8'h4a;8'hbd: d=8'h4c;8'hb5e: d=8'h58;
8'h5f: d=8'hcf;8'h60: d=8'hd0;8'h61: d= £;8'h62: d=8'haa;8'h63: d=8'hfb;
8'h64: d=8'h43;8'h65: d=8'h4d;8'h66: d= 33;8'h67: d=8'h85;8'h68: d=8'h45;
8'h69: d=8'hf9;8'h6a: d=8'h02;8'h6b: d= 7f;8'h6c: d=8'h50;8'h6d: d=8'h3c;
8'h6e: d=8'h9f;8'h6f: d=8'ha8;8'h70: d= h71: d=8'ha3;8'h72: d=8'h40;

51;
9d;
da;
d2;
5f;
7;
9;

8'h73: d=8'h8f;8'h74: d=8'h92;8'h75:
8'h78: d=8'hbc;8'h79: d=8'hb6;8'h7a:
8'h7d: d=8'hff;8'h7e: d=8'hf3;8'h7f:
8'h82: d=8'h13;8'h83: d=8'hec;38'h84:
8'h87: d=8'h17;8'h88: d=8'hc4;8'h89:
8'h8c: d=8'h64;8'h8d: d=8'h5d;8'h8e:
8'h91: d=8'h81;8'h92: d=8'h4f;8'h93:
8'h96: d=8'h90;8'h97: d=8'h88;8'h98:
8'h9b: d=8'h14;8'h9c: d=8'hde;8'h9d:
8'ha0: d=8'he0;8'hal: d=8'h32;8'ha2:
8'hab: d=8'h06;8'ha6: d=8'h24;8'ha7:
8'haa: d=8'hac;8'hab: d=8'h62;8'hac:
8'haf: d=8'h79;8'hb0: d=8'he7;8'hbl:
8'hb4: d=8'h8d;8'hb5: d=8'hd5;8'hb6:
8'hb9: d=8'h56;8'hba: d=8'hf4;8'hbb:
8'hbe: d=8'hae;8'hbf: d=8'h08;8'hcO:
8'hc3: d=8'h2e;8'hc4: d=8'hlc;8'hch:
8'hc8: d=8'he8;8'hc9: d=8'hdd;8'hca:
8'hcd: d=8'hbd;8'hce: d=8'h8b;8'hct:
8'hd2: d=8'hb5;8'hd3: d=8'h66;8'hd4:
8'hd7: d=8'h0e;8'hd8: d=8'h61;8'hd9:
8'hdc: d=8'h86;8'hdd: d=8'hc1;8'hde:
8'hel: d=8'hf8;8'he2: d=8'h98;8'he3:
8'he6: d=8'h8e;8'he7: d=8'h94;8'he8:
8'heb: d=8'he9;8'hec: d=8'hce;8'hed:
8'hf0: d=8'h8c;8'hfl: d=8'hal;8'hf2:
8'hf5: d=8'he6;8'hf6: d=8'h42;8'hf7:
8'hfa: d=8'h2d;8'hfb: d=8'h0f;8'hfc:
8'hff: d=8'h16;
endcase

h76: d=8'h38;8'h77: d=8'hf5;
h7b: d=8'h21;8'h7c: d=8'h10;
h80: d=8'hcd;8'h81: d=8'hOc;
h85: d=8'h97;8'h86: d=8'h44;
h8a: d=8'h7e;8'h8b: d=8'h3d;
h8f: d=8'h73;8'h90: d=8'h60;
h
h

8'
8'
8'
8'
8'
8'
8'
8'
8'
8'
19;8"'
dc;8'
8'
8'
8
8'
8'
8'
8'
8'
8'
8'
8'

94: d=8'h22;8'h95: d=8'h2a;

99: d=8'hee;8'h9%a: d=8'hb8;
h9e: d=8'h0Ob;8'h9f: d=8'hdb;
'ha3: d=8'h0a;8'had: d=8'h49;
ha8: d=8'hc2;8'ha9: d=8'hd3;
had: d=8'h95;8'hae: d=8'he4;
hb2: d=8'h37;8'hb3: d=8'h6d;
hb7: d=8'ha9;8'hb8: d=8'h6c;
hbc: d=8'h65;8'hbd: d=8'hT7a;
hcl: d=8'h78;8'hc2: d=8'h25;
a6;8'hc6: d=8'hb4;8'hc7: d=8'hc6;
74;8'hcb: d=8'h1f;8'hcc: d=8'h4b;
82a;8'hd0: d=8'h70;8'hdl: d=8'h3e;
48;8'hdb: d=8'h03;8'hd6: d=8'hf6;
35;8'hda: d=8'h57;8'hdb: d=8'hDb9;
1d;8'hdf: d=8'h9e;8'he0: d=8'hel;
11;8'he4: d=8'h69;8'he5: d=8'hd9;
9b;8'he9: d=8'hle;8'hea: d=8'h87;
55;8'hee: d=8'h28;8'hef: d=8'hdf;
89;8'hf3: d=8'h0d;8'hf4: d=8'hbf;
8;8'hf8: d=8'h41;8'hf9: d=8'h99;
0;8'hfd: d=8'h54;8'hfe: d=8'hbb;

46;
Se;
c;

3a;
5
91;

8;
de;

ea;
ba;

000000000000000000000000000000000000000000000000000000000000000000000000000000000000

'h
'h
'h
'h
'h
'h
'he
'h
'h
'h
'he
'h
'h
'h5
'h
'h
'h
'h
'hal
'h
'h
'h
'h
'h
'h
'h
'hc
'h
'he
'h
'h
'h
'h
'h
'h
'h
'h
'h
'h
'h
'h6
'h

Q-QaQQ-Q-Q-aQ-QCLQ-Q-aQ-QJCLD-Q-aQ-QaQQ%Q&Q&Q&Q&Q&Q&Q@Q&Q&Qaﬂ-

b

endmodule

87



17. Verilog : UART(CODE)

17.1. rx.v

“timescale 1ns / 1ps

module rx(
clk,//clock of frga
data_in,// the rectiver pin in fpga
data_state,
data_out // the data obtained
);
input clk,data_in;
output [127:0] data_out;
output data_state;

//change these to change the baud rate
parameter clock_speed=100000000;//speed of the FPGA clock
parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;
// number of clock cycles your hardware can afford per bit

//states
reg[1:0] state=2'b0;//STATES
localparam init=2'd0,start=2'dl,readdata=2'd2,stop=2'd3;//states

//registers

regl[24:0] clock_counter=24'b0;//counts how many clock cycles passed
reg[24:0] temp_clock_counter=24'b0;//counts how many clock cycles passed
regl[7:0] output_array=8'b0;//stores the recieved bits

reg[6:0] no_data_recieved=7'b0,temp_no_data_recieved=3'Db0;
//counts how many data bits recteved

reg[127:0] temp_temp_data_out=128'b0,temp_data_out=128'b0,data_out128=128"'b1;
//holds 128 bit data

reg temp_data_state=0;
reg [18:0] data_state_counter=0;

always@(posedge clk) begin

case (state)

//stays in idle state

init:
begin
if (clock_counter==clock_per_bit<<3)
begin
temp_data_state<=1'b0;
clock_counter<=0;
end
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else
begin

clock_counter<=clock_counter+1;
end

if (data_in==0)//check for the first O
begin
clock_counter<=0;
state<=start;//goto next state
end
end
//starts when first 0 is recieved
start:
begin

if (clock_counter==(clock_per_bit>>1))
// check tf half the clock cycles asstignes has passed

begin
if (data_in==0)//%if the <nput is still O or not
begin
clock_counter<=0;//reset clock
state<=readdata;//go to nexzt state
end
else
begin
state<=init;//else go to the first state
end
end
else
begin

clock_counter<=clock_counter+l;//count to wait the required clock cycles

end
end
//starts to read data until 8 datas points are obtained
readdata:
begin
if (clock_counter==clock_per_bit)
begin
clock_counter<=0;
output_array<={data_in,output_array(7:1]1};// assign the input data
//uart offers mirror tmage of data,
//the trick above helps us to recreate the original data
no_data_recieved<=temp_no_data_recieved;//counts the total data recteved
if (&no_data_recieved[2:0])//check tf data recieved is seven or mnot
begin
clock_counter<=0;//clears clock
temp_temp_data_out<=temp_data_out;
//calculates once 8 bit data is received

state<=stop;//proceeds to next state

end
end
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else

begin
clock_counter<=clock_counter+1;//counts till required clock time
end
end
//once 8 bit data are obtained rests until the last enter data settles
stop:
begin
if ("(Ino_data_recieved[6:0]))//7 times 8 bit data is input
begin
temp_data_state<=1'bl;
end
else
begin
temp_data_state<=1'b0;
end

if (clock_counter==clock_per_bit)//the 10 is used as temporary wait time to proceed to next input
begin
clock_counter<=0;//resets clock

state<=init;//qgoes to sleep state and awakes if the next input is O
end
else
begin
clock_counter<=clock_counter+l;//counts clock cycles
end

end
//default
default:
state<=init;
endcase
end
//happens every clock cycles
always@(posedge clk)
begin
temp_no_data_recieved<=no_data_recieved+l;//increments the data collected

if (state==stop)
begin
temp_data_out<={temp_temp_data_out[119:0],output_arrayl};
//at stop state assignes the collected seven bit data
//else continues to carry its previoud value

if (" (Ino_data_recieved[6:0]))//7 times 8 bit data is input
begin
data_out128<=temp_data_out;//output data

end
end

if (state==init)
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begin
if (temp_clock_counter==clock_per_bit*160)
begin
data_out128<=128'b1;
temp_clock_counter<=0;
end
else
begin
temp_clock_counter<=temp_clock_counter+1;
end
end
else
begin
temp_clock_counter<=0;
end

end
assign data_state=temp_data_state;
assign data_out=data_out128;

endmodule

17.2. tx.v

“timescale 1lns / 1ps

module tx(
data_state,
clk,
data,
reset,
out
);
input data_state;
input clk;
input reset;
input [127:0] data;
output out;

reg [2:0] state=2'd0;

reg [10:0] data_send;

localparam init=2'd0,setup=2'dl,writedata=2'd2;//states
parameter rest=1;

//change these to change the baud rate

parameter clock_speed=100000000;//speed of the FPGA clock

parameter baud_rate=9600;//the number of bits you need per second

parameter clock_per_bit=10417;
// number of clock cycles your hardware can afford per bit

91



reg[16:0] clock_counter=13'b0;//counts how many clock cycles passed

reg temp_out=rest;
reg [3:0] bit_counter=0,temp_bit_counter=0;;
reg [3:0] byte_counter;
always@(posedge clk)
begin
case(state)
init:
begin
temp_out<=1'bl;
byte_counter<=0;
if (data_state==1)
begin
state<=setup;
end
end

setup:
begin
if (reset==1)
begin
state<=init;
end
else
begin
case(byte_counter)
0:data_send = {1'bl,1'bl,datal[127:120],1'b0};

1:data_send = {1'bl,1'bl,datal[119:112],1'b0};
2:data_send = {1'bl,1'bl,datal111:104],1'b0};
3:data_send = {1'bl,1'bl,datal[103: 96],1'b0};
4:data_send = {1'bl,1'bl,datal 95: 88],1'b0};
5:data_send = {1'bl,1'bl,datal 87: 80],1'b0};
6:data_send = {1'bl,1'bl,datal 79: 72],1'b0};
7:data_send = {1'bl,1'bl,datal 71: 64],1'b0};
8:data_send = {1'bl,1'bl,datal 63: 56],1'b0};
9:data_send = {1'bl,1'bl,datal 55: 48],1'b0};
10:data_send = {1'bl,1'bl,datal 47: 40],1'b0};
11:data_send = {1'b1l,1'bl,datal 39: 32],1'b0};
12:data_send = {1'bl,1'bl,datal 31: 24],1'b0};
13:data_send = {1'bl,1'bl,datal 23: 16],1'b0};
14:data_send = {1'bl,1'bl,datal 15: 8],1'b0};

15:data_send = {1'bl,1'bl,datal 7: 0],1'b0};
endcase

state<=writedata;
clock_counter<=clock_per_bit;
bit_counter<=0;
end
end

writedata:
begin
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if (clock_counter==clock_per_bit)
begin
temp_out<=data_send[bit_counter];
clock_counter<=0;
if (bit_counter==10)

begin
if (byte_counter==15)
begin
state<=init;
end
else
begin
state<=setup;
byte_counter=byte_counter+1;
end
end
else
begin
bit_counter<=bit_counter+i;
end
end
else
begin
clock_counter<=clock_counter+1;
end
end
default:
begin
state<=init;
end
endcase
end
assign out=temp_out;
endmodule

18. Device Compilation Code

18.1. main.v for FPGA with encryption

“timescale 1ns / 1ps

module main(
clk,
data_in,
data_out_tx
);
input clk,data_in;
output data_out_tx;

wire data_state,encoded_data_state;
wire [127:0] data_out_rx;//data_out_rz_test;



wire [127:0] encrypted_data;
reg [127:0] key=128'h5468617473206d79204b756e67204675;

rx DUT1(clk,data_in,data_state,data_out_rx);

encryption_main DUM(clk,data_out_rx,data_state,key,encrypted_data,encoded_data_state);
tx DUT3( encoded_data_state, clk, encrypted_data,1'bO, data_out_tx);

endmodule

18.2. main.v for FPGA with decryption

“timescale 1ns / 1ps

module main(
clk,
data_in,
data_out_tx
);
input clk,data_in;
output data_out_tx;

wire data_state,encoded_data_state;

wire [127:0] data_out_rx;//data_out_rz_test;

wire [127:0] decrypted_data;

reg [127:0] key=128'h5468617473206d79204b756e67204675;

rx DUT1(clk,data_in,data_state,data_out_rx);

decryption_main DUM(clk,data_out_rx,data_state,key,decrypted_data,encoded_data_state);
tx DUT3( encoded_data_state, clk, decrypted_data,1'bO, data_out_tx);

endmodule
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